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ABSTRACT 

Cosmological density fluctuations are often assumed to be Gaussian random fields. The local maxima 
of such fields are obvious sites for the formation of nonlinear structures. The statistical properties of 
the peaks can be used to predict the abundances and clustering properties of objects of various types. 
In this paper, we derive: (1) the number density of peaks of various heights voe above the rms eo; 
(2) the factor by which the peak density is enhanced in large scale overdense regions; (3) the n-point 
peak-peak correlation function in the limit that the peaks are well separated, with special emphasis 
on the two and three point correlations; and (4) the density profiles centered on peaks. To illustrate 
the predictive power of this semi-analytic approach, we apply our formulas to structure formation in 
the adiabatic and isocurvature G = 1 cold dark matter (CDM) models. We assume bright galaxies 
form only at those peaks in the density field (smoothed on a galactic scale) that are above some global 
threshold height IQ - 3 fixed by normalieing to the galaxy number density. We find, for example, 
that the shapes of the peak-peak twc- and threepoint correlation functions for the adiabatic CDM 
model agree well with observations before any dynamical evolution, just due to the propensity of the 
peaks to be clustered in the initial conditions. Only moderate dynamical evolution is required to 
bring the amplitude of the correlations up to the observed level. The corresponding redshift of galaxy 
formation .z# in the isocurvature model is too recent (.Q 
the adiabatic models zD - 

- 0) for this model to be viable. Even for 
3 - 4 is predicted. We show that the mass-per-peak ratio in clusters, and 

thus presumably the cluster mass-to-light ratio, is substantially lower than in the ambient medium, 
alleviating the G problem. We also confirm that the smoothed density profiles of collapsing structures 
of height - vt are inherently triaxial. 
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1. INTRODUCTION 

Recent theories of the formation of cosmological structures focus attention on the linear and 
early nonlinear epochs appropriate to the collapse of regions of different length scales. The structure 
and clustering pattern of the objects forming reflect the initial conditions. These are embodied in a 
probability ensemble for linear density perturbation configurations F(?,t) E (p(?,t) - (p))/(p). The 
fluctuation density F(r’, t) thus defines a three-dimensional random field. In this paper we derive some 
statistical properties of the local maxima of such fields, assuming’they are Gaussian-distributed. Our 
results can form the core of an analytical framework within which to address the problem of structure 
formation from small amplitude initial density fluctuations. 

The methods we use here complement the n-body and hydrodynamical techniques which are 
commonly applied to this problem. In principle, n-body methods allow one to follow the nonlinear 
evolution of any random density field by evolving enough realizations from the probability ensemble 
so that a combination of averaging over spatial volumes and over ensemble members converges. In 
practice, limitations arise from discreteness and from present computing capabilities: calculations can 
cover only limited spatial and temporal dynamic ranges; and the number of realizations from the 
ensemble that can be evolved is relatively small. (See Efstathiou et al. 1984 for a recent discussion.) 
For example, the development of rare condensations such as rich clusters are rather difficult to examine 
by n-body techniques (Barnes et al. 1984). The analytic methods described here are already ensemble- 
averaged and allow one to investigate easily the gross features of a broad class of initial conditions; and 
they are particularly suited for the study of rare events. (See Kaiser 1984a for an application to rich 
clusters.) At present, cosmological hydrodynamical studies require localized pre-collapse structures 
for their initial conditions. Probabilities of various initial shapes can best be obtained by the statistical 
methods of the sort we develop here. 

In our approach to the problem of non-linear evolution of structure, we focus on the local 
maxima of the initial density perturbations. We aesume that condensations of matter form around 
sufficiently high local density peaks. In order that the density field possess a well defined set of 
local maxima it must be smooth and differentiable; its harmonic content must be limited at high 
wavenumbers. It is often assumed that at very early times the spectrum of fluctuations had a power 
law form over a wide range of length scales. Deviations from any power law would have arisen naturally 
on some small scale when the fluctuations were generated, leading to differentiability. However, this 
length may be tiny, far below scales associated with cosmic structure. If fluctuation power is significant 
for arbitrarily short wavelengths, then noisy structure will exist on all scales. Universes dominated by 
cold dark matter have such fluctuation spectra (Peebles 1982, Bond and Szalay 1983). Every cloud 
would consist of ever smaller subclouds down to the small cutoff scale. During linear evolution, low- 
pass filtering on cosmologically interesting scales may occur due to a variety of physical processes. For 
example, adiabatic density fluctuations in baryon-dominated universes suffer Silk damping, and, in 
neutrino-dominated universes, they suffer collisionless damping as well. The first structures to form 
are of the physical filtering scale, with smaller scale structure generated by the ‘pancaking’ process 
(Zeldovich 1970). 

If no physical filtering process exists, as in the cold dark matter picture, we can still treat the 
formation of objects of some characteristic size by applying an artificial low-pass filter of this scale to 
the density fluctuation spectrum. This has the effect of smoothing out all of the high frequency spikes 
in the density field. Since the filter is not physical, care must be taken to avoid the over-interpretation 
of smoothed density field statistics. This applies especially to the problem of shapes near peaks (57). 

Our model constitutes a non-local and non-linear operation which, when applied to an initial 
continuous density field F(r), yields a ‘population of objects’ described by the density field of a point 
process, a sum of delta functions: 

?Q,k(F) = p3)(+ ?J, 
P 
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where the Fr are the positions of the maxima satisfying certain physically-motivated conditions, such 
as that their height be above some threshold. The non-locality is embodied in the linear filtering, or 
smoothing, operation (if required) and the non-linearity is introduced by the subsequent application of 
a threshold criterion. The model has two adjustable parameters: the filtering length and the threshold 
parameter. We feel that this composite operation encompasses the essential features of the clustering 
action of gravity. It can also provide a model for a threshold mechanism which may operate, for 
instance, if galaxy formation were suppressed except at the high peaks of the density field. 

We shall restrict ourselves to isotropic homogeneous Gaussian random fields with zero mean 
as descriptions of the initial cosmological density fluctuations. Such a field is completely specified, 
in a statistical sense, by a single function: the power spectrum P(k); or, equivalently, its Fourier 
transform, the autocorrelation function, f(r). The Gaussian nature is retained throughout the linear 
regime of evolution. In principle then, a complete statistical description of the local maxima can be 
extracted from the power spectrum. 

That a Gaussian random field may provide a good description of the properties of density 
fluctuations could arise in a number of ways. The central limit theorem implies that a Gaussian 
distribution arises whenever one has a variable (or, more generally, e. vector) which is a linear super- 
position of a large number of independent random variables (or vectors) which are all drawn from the 
same distribution. In particular, if the field F( ) r is written as a spatial Fourier decomposition, and its 
Fourier coefficients Fb are statistically independent, each having the same form of distribution, then 
the joint probability of the density evaluated at a finite number of points will be Gaussian under very 
weak conditions. Special cases of this include the random phase approximation, in which it is assumed 
that the phases of Fk are uniformly distributed from 0 to 2x. The specific form of the distribution 
of the moduli iF,J does not matter. We note that small amplitude curvature perturbations generated 
by quantum fluctuations in an inflationary phase of the very early universe would yield a Gaussian 
random density field. Other examples of density fluctuations which are approximately Gaussian are 
provided by shot noise distributions. A ‘shot noise’ density field consists of ‘shots’ (specific local den- 
sity profiles such as Gaussians) centered on sites chosen from some random point process (e.g. Poisson 
statistics). On scales much larger than that of the shot, such distributions tend toward Gaussians as 
a consequence of the central limit theorem (Rice 1944). For example, gas density perturbations gen- 
erated ‘spontaneously’ by inhomogeneous sources of radiation burning at redshifts of a few hundred 
(Hogan 1983) should be nearly Gaussian, though deviations at the high msss end are possible (Hogan 
and Kaiser 1983). High density loops of cosmic strings (Vilenkin 1984), the ‘shots’, would constitute 
a highly non-Gaussian density field locally. However, these loops would also have generated adiabatic 
perturbations in the matter as they entered the horizon and this component may be approximately 
Gaussian. 

The statistical analysis of one-dimensional Gaussian random fields was pioneered by Rice 
(1944,1945) to analyze electrical noise in communication devices. He obtained expressions for the 
frequency of upward zero crossings, of maxima, and of extrema. The clustering properties were 
largely ignored. Longuet-Higgins (1957) extended Rice’s analysis to two dimensions; his prototype 
random surface was an ocean surface rippled by gentle winds. He obtained the average number of 
maxima per unit area and the distribution of their heights, but was unable to obtain an expression 
for their spatial distribution except for a nearly monochromatic field. Less progress has been made 
for the caee of higher dimensional fields due largely to the mathematical complexities. Adler (1981) 
has written a rigorous mathematical text on those few theorems that have been proved. 

Doroshkevich (1970) was the first to apply these methods extensively to the study of the for- 
mation of cosmic structure. The many results given in this classic paper have mostly been applied 
to the pancake model, primarily by the Russian school. Adler and Doroshkevich give the number of 
peaks per unit volume in the limit where the amplitude of the peaks is extremely high (54). They 
also obtain a closed analytic result for the average Euler characteristic expected per unit volume 
for contour surfaces of a given density; this useful result is twice the density of maxima in the high 
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peak limit (54). Doroshkevich also evaluated the average shapes of contours around maxima ($7). 
Unfortunately, Doroshkevich only presents his results for a rather specific choice of power spectrum 
(an approximation to that which arises from initially adiabatic fluctuations in a baryon dominated 
universe), and focuses primarily on high threshold limits, which, as we shall show, are inaccurate 
in the regime of cosmological interest. He also does not address the important issue of the spatial 
distribution of maxima; in particular, determination of their correlation functions. Doroshkevich and 
Shandarin (1978aJ978b) have calculated some of the statistical properties of the maxima of the largest 
eigenvalue of the shear tensor. These maxima define the ‘domain walls’ where pancakes form rather 
than the isolated points which form the maxima of the density field. These authors also restrict their 
analysis to baryon-dominated ‘pancake’ models. Recently, a number of workers have attempted to 
determine the properties of bound objects which form in universes dominated by dark matter in which 
the perturbations obey Gaussian statistics (Peebles 1983, Hoffman and Shaham 1984, Shaeffer and 
Silk 1984); when the calculations involve the constraint that a point is an extremum of the density, 
our results differ from theirs. In 53, we discuss the procedure for constructing conditional probabilitiee 
subjected to the extremum constraint. These are required for the correct calculation of the spatial 
distribution of extrema and of the density profiles around them. 

Kaiser (1984a) discussed the way in which the clustering of maxima reflects the correlations of 
the underlying density field. He obtained the 2-point correlation function of those regions with density 
fluctuations above some threshold v (in units of the rms fluctuation level, 00); i.e. the autocorrelation 
of a Heaviside function of the density field: Y(r) = B(F(r) - me). On large scales, (Y(r)Y(O)) 
is proportional to (F(r)F(O)) with an amplitude which increases with increasing threshold. This 
mechanism might account for the anomalously large correlation strength of rich clusters. Politzer and 
Wise (1984) extended this result and also gave an expression for the n-point correlation function of 
the highly non-Gaussian field Y(r) valid in the limit of very high threshold. The large scale clustering 
properties of Y(r) can also be obtained from an effective density field which is simply the exponential 
of the underlying density field F(r) with its short-wavelength components filtered out; again thii result 
is strictly valid only in the limit of high threshold. From this form (ezp(vF(r)/uo)) for the effective 
density field it is easy to see that on large scales one has a simple linear enhancement of the correlation 
strength while on smaller scales one has the possibility of a non-linear enhancement of the number 
density of high peaks in initially overdense regions. It was recognized (Bardeen 1984, Kaiser 1984b) 
that if, for some reason, galaxy formation had been suppressed except at the high density peeks thie 
process would give rise to strong segregation of light from mass and provide a natural way to reconcile 
low cluster mass-to-light ratios obtained from Aria1 analysis with an Sl = 1 universe. This statistical 
mechanism had also been invoked, though in a slightly different context, by Rees (1984) as a possible 
way to obtain mass/light segregation on large scales. 

The outline of the paper is 89 follows. In 52, we define some general properties of random 
fields. In 53, we discuss the point process equation (1.1) and give the general formula for the average 
number density of peaks. We also discuss the problem of the proper conditional probability constraints 
appropriate to maxima using a one-dimensional illustration. In 54, we calculate the average density of 
maxima of a general three-dimensional Gaussian field as a function of the heights of the maxima, and 
present a useful analytic approximation to our formula. Our results are valid for arbitrary heights. 
We also obtain the high peak limit of our result and discuss the utility of it and of the average Euler 
characteristic density. We then compute the average density of ‘upcrossing’ points on density contour 
surfaces and show that it gives a good approximation to the peak density. In $5, we determine the 
number density of peaks subject to the constraint that the large scale density field be fixed. We use 
this to discuss the segregation of high peaks from the underlying mass distribution. In 56, we present 
the machinery to calculate n-point peak-peak correlation functions. We explicitly calculate the twc- 
and the three-point function. In 57, we determine the shapes of the profiles about maxima. Finally, 
in 58, we summarize our main results and outline how these statistical results can be applied to 
cosmological problems, We have relegated the details of many of the derivations to seven appendices. 

In discussing cosmological applications of our formal results, we assume a universe dominated 
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by cold dark matter (CDM) with density parameter fl = 1 and zero cosmological constant. Unless 
specifically stated otherwise, all spatial separations and length scales are described in comoving COOP 
din&es in the cosmological background, scaled so they correspond to physical distances at the present 
cosmological epoch. ~To reflect the observational determination of cosmological distance from redshift, 
all distances are given in units of h-‘Mpc, where h is related to the Hubble constant Ho by 

h s If,,/ (100 km s-l Mpc). 0.2) 

2. GAUSSIAN RANDOM FIELDS 

An n-dimensional random field P(J r is a set of random variables, one for each point 7 in n- 
dimensional real space, defined by the set of finite-dimensional joint probability distribution functions, 

P(F(i;),F(i=&...,F(r’,)) dF(?JdF(r;)...dF(T~), (2.1) 

that the function F have values in the range F(Fj) to F(c) + dF(c) for each of the j = l,...,m 
with m an arbitrary integer and ?‘I,F~,...,?~ arbitrary points. By taking appropriate limits, the joint 
distribution for values of F and its derivatives, VF,VVF, . . . follow. Differentiation and integration of 
random fields may not always be possible; they are usually defined as appropriate limits in the mean 
square. For example, without high frequency filtering, the density perturbation field for cold dark 
matter starting from an initial Zeldovich spectrum is arbitrarily spiky on small spatial scales, and this 
random field is not differentiable. 

A Gaussian randomfieldis one for which the various m-point probability distributions (equation 
2.1) are multivariate Gaussians. A joint Gaussian probability distribution for random variables yi is 

P(yl, . ..yn)&l...dyn = 
ee4 

((2K)“det(M))‘/2dy’...dy,, 

Q z C Ayi(M-‘)ijAYj/2. 
P.2) 

Only the means of the random variables (yi) and their covariance matrix 

Mij E (AYiAYj), AY< 3 Yi - (Yi) (2.3) 

are required to specify the distribution. If F(3 r is Gaussian, joint distributions involving arbitrarily 
many values of the field and its derivatives, integrals and generally any linear functions of F are 
Gaussian. For a scalar Gaussian random field with zero mean, knowledge of only the 2-p&t correlation 
function of F, E(rl,rs) = (F(rl)F(r,)) and its derivatives and integrals is sufficient to calculate any 
statistical property. 

A random field is strictly homogeneous if all finite dimensional distributions are invariant under 
simultaneous translations of the points < by the same vector. For Gaussian fields, this implies (F(q) 
is spatially-independent and E is a function of the difference ri - Fs only; its Fourier transform is the 
power spectrum, P(k), given by the variance 

P(k) = (IF&. (2.4) 

The spatial Fourier modes, Fk = ) FkJ e’@k , are defined by the expansion 

F(r) = 2 c jFklcos(~. i+ g,), 
k L uh. 

(2.5) 

where uhs denotes the upper half of k-space, the limitation arising from the reality of F, so 8-k = -gh, 
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A strictly homogeneous Gaussian random field is isotropic if E is rotation-invariant. The power 
spectrum is then only a function of /cl. 

Rigorously,~in order for a field to be strictly homogeneous and Gaussian, its various spatial 
Fourier modes, Fk, must be mutually independent, have random phases and have moduli which are 
Rayleigh-distributed: 

IFd’ IFkl dl&l dh 
P(IFd,h)dlF~I d&v = e~~(-~ k) P(k) zx (2.6) 

The real and imaginary parts of Fk are then mutually independent and Gaussian-distributed. How- 
ever, as a consequence of the central limit theorem, a large variety of distributions will tend to a 
Gaussian. For example, random phases are essentially all that is required of equation (2.6) for the 
joint distribution of the density evaluated at a number of points to be a multivariate Gaussian. The 
quantum generation of metric fluctuations predicted to occur in inflationary models would give rise 
to a distribution of the form of equation (2.6). 

An important property of Gaussian random processes is that they are ergodic. Our universe is 
unique, at least in the large. Thus, averages taken in our universe must be spatial ones, over a large 
volume. These averages will be equal to expectations over an ensemble of universes to which ours 
belongs if an ergodic theorem holds. It can be proved that a Gaussian random density fluctuation 
field is ergodic if and only if P(k) is continuous (Adler 1981). 

3. THE EXTREMUM CONSTRAINT 

3.1 THE NUMBER DENSITY OF EXTREMA 

The point process equation (1.1) describes the number density of points p selected to be maxima 
of the random field F(?). We could further restrict the class of points we select if we consider, for 
example, only those maxima above a certain threshold height. Or, we might be interested in the less 
restrictive class of extremal points. 

We can express the point process entirely in terms of the field and its derivatives. In the 
neighborhood of a maximum point TP we can expand the field F(?) and its gradient ii(?) c VF(q in 
a Taylor series: 

F(F) FJ F(Fp) + ‘CS..(*- rp)i(r - *p)j, 
2 ij ” 

%(3 FJCfij(r- ‘p)j. 
(34 

i 

We have used the extremum constraint t~i(?~) = 0. For the extremum to be a maximum, the mend 
derivative tensor of the field, cii 3 ViVj~(~, must be negative definite at G. (We are following ~&e’s 
1944 notation of q for the first derivative and < for the second derivative.) Provided the c-matrix b 
nonsingular at TP, we have 

r’- Fp FY <-‘(Fp)rj(fJ, hence 6 (‘)(F- Fp) = ldet <(r,)l 6@)(ij(~). 

This is true for each maximum; but the &function picks out all of the (eztrema[) points whi& are 
zeros of ii(?). The expression for the number density of extrema in terms of field derivatives is then 

n.,t(fJ = ld=t s(r)1 @)(rl’(q); (3.2) 

the expression for npk(q is identical except for the added restriction of negativity on the 3 eigenvalues 
of <;j. Further, if we select only those maxima whose heights are in the range F. to F,, + dF, a 
6(F - Fo)dF multiplies equation (3.2). 
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In principle, we could calculate an infinite hierarchy of correlation functions of equation (3.2). 
This is necessary for a complete description of the point process. In practice, only the ensemble 
average of 3.2 is easily obtainable: 

= 
I 

ldet </ p(F, rj = 0, c)dFd’<. (3.3) 

The homogeneity of the field guarantees that this will be independent of K To evaluate equation 
(3.3), we require the joint probability distribution p(F,q,<)dFd3qdag for the field at r’ = 0 being 
in the range F to F + dF, the field gradient rli being in the range 7; to qi + dqi, and the second 
derivative matrix elements <;j being in the range $ij to <ij + d<ij. This distribution is evaluated ~YI 
the usual multivariate Gaussian (equation 2.2). Since <ij is symmetric, there are only 6 independent 
components. The computation of this integral is given in Appendix 1 and the results are discussed in 
§4. 

The derivation of equation (3.3) does not require the introduction of the point process, but can 
be obtained directly from the probability distribution. We now sketch this development. In order to 
have a zero of 6 somewhere in the infinitesimal volume d3r about r’ = 0, we must hsve vi FJ cijrj, 
hence d3q can be replaced by ldet 51 d3r. The probability that there is a zero in d3r is then 

dFd3r 8s ldet c/ p(F,q = 0,~) = (n.&F))dFd’r, 

so the extremum number density is given by equation (3.3). The integral is over all values of $ for a 
extremum. 

Equations (3.2) and (3.3) csu be generalized to the determination of the number density of 
points for which any (different) random fields, yr(r’),ys(fl,ys(fl, take on specific values, Ym,Yso,Y3e. 
Since Y;(?J FY Yie + Cj Yi,j(rj - rej), the mean number density is, for example, 

MYlO, Yso*Yso)) = J ( - p YI - YIO, 112 = ~20,~s = ~309 {Yi,j}) 1 det (yi,j) I fl dy<,j. (3.4) 

In the application to extreme that we sre most interested in, y; = tli and y;e = 0. It is straightforwsrd 
to obtain the density of points with aspecific nonzero value of the gradient from this. A related problem 
would be to determine the density of points for which the velocity has s specific value. However, the 
yi do not have to be the components of a vector for this density formula to be applicable (see 54.5). 

3.2 THE EXTREMUM CONSTRAINT IN CONDITIONAL PROBABILITIES 

The problem of density of maxima is especially easy in onedimension and was solved by Rice 
(1944, 1945). We review the reasoning behind this calculation here because it illustrates sn impor- 
tant issue: that care must be taken when constructing probabilities of various events subject to the 
constraint that an extremum exists at some given point (r = 0 say). The conditional probability that 
event A occurs given that event E is true is given by the Bayes formula P(AIE) = P(A, E)/P(E). 
For example, we might take the event A to be that the height of the density field at the extremum 
be in some prescribed range; or that the height of the field a distance I away from the extremum 
be in some prescribed range. Iu this subsection, we discuss the extremum rather than the maximum 
constraint; almost all sufficiently high extrema will be maxima. 

At first sight, one might expect that the event that there is an extremum at zero, E, should be 
taken to be 7 = dF/dr = 0. However, probabilities for point events worded in this way sre always 
zero. What we really mean by the constraint is that there is an extremum in an interval of length 
E about r = 0; we must form conditional probabilities for events E, of this form and only then can 
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we let the length of the interval go to zero. If rc denotes the extremal point, then, since a Taylor 
expansion of I implies rc B -r)(O)/{(O), th e condition that IreI < E/Z reduces to the condition 
h/s1 < e/2. If we let P(K c)drldc and ~(4 rl>c)dtldc d enote the obvious joint probabilties, then 

-+ 6 
I 

IfI& P(V = 0,~) and 

P(A, E<) + c J IsI ~(-%rl= 0,s) = e -t 0. 

(3.5) 

The conditional probability is the ratio of these two integrals. The presence of IsI in both integrands is 
an important feature. The integration is over both positive and negative c for extrema. The constraint 
that r = 0 be a maximum leads to identical equations except that the integration is only over negative 
5. 

Another possible set of constraint events E: which give an extremum at r = 0 in the limit c -+ 0 
is given by the condition: 1~1 < c/2. This class of events was impicitly assumed by Peebles (1934) and 
Hoffman and Shaham (1984) in their determination of various conditional probabilities of cosmological 
interest. The obvious advantage that the distribution of second derivatives is not required is offset 
by the fact the probabilities so obtained are biased in favor of extrema with extremely broad profiles. 
These are just the extrema which are of least interest cosmologically. The events E: define intervals 
of length Ar = l /S within which the extrema occur. For fixed C, it is clear that < being as small as 
possible probes the largest regions for zeros of dF/dr. The events E, exactly compensate for thii ~0 
the lengths are all of equal size. 

The average density bf extrema as determined from equation (3.3), 

ht) = k? P(E,)/c, 

is the probability of finding one per unit length only if the constraint events E, are chosen. If the 
extremal points re are chosen to be only those for which the event A is true, then the associated maan 
density is 

(n.,,(A)) = !~J=P(A, E<)/L. 

The conditional probability of event A occuring given that r = 0 is an extremum is thus the ratio of 
the numbers of special extremal points for which A is true to all extremal points: 

P(AlE) = (n.,t(A))/(n.,t). (3.7) 

We are often interested in further constraint conditions, for example that the height of the 
extremum is some prescribed value. Denoting this condition by the event B, we have 

P(AIB, E) = (n,=t(A,B))l(n.,t(B)). (3.3) 

This result, when extended to three-dimensions, is used extensively in the rest of the paper. The 
extension is straightforward as in 83.1 

Various erroneous statements have appeared in the cosmological literature due to the choics 
of El as the constraint events. Peebles (1984) has claimed that the distribution of heights of an 
extremum is the same as that for arbitrary points, namely a Gaussian. Peebles and Hoffman and 
Shaham (1984) have claimed that the expectation of the shape of the profile around an extremum, or 
maximum, is approximately equal to the correlation function of F. As we now show, the distribution 
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of the heights of maxima is generally broader than that of field points (54) and the correct average 
profile is narrower than the correlation function ($7). 

4. THE P,EAK NUMBER DENSITY OF 3-DIMENSIONAL FIELDS 

4.1 THE NUMBER DENSITY FITTING FORMULA 

In this section, we sketch the derivation of the differential number density A&(Y), where y E 
F/o0 with oo the rmsfluctuation level of F. (From now on, we let ,U,,k(v)dv denote average differential 
number densities, and n+(p) denote number densities integrated over v.) We also present an accurate 
fitting formula to our result. The derivation is given in detail in Appendix 1. The steps are as follows: 

(1) To evaluate equation (3.3) with the added requirement that the points are maxima rather than 
just being extrema, we first obtain the Gaussian joint probability distribution p(F,q, g)dFd%@<. 
Since <ii is symmetric, there are only 6 independent components. The integral is over all values of < 
for an extremum. 

(2) To obtain the density of maxima, 5 must be negative definite. In that case, it is useful to rotate 
to its principal axes. A set of Euler angles defines the rotation matrix, R, which diagonalizes c: 
diag(Xl,Xz,Xs) = -R<Rt, Rt denoting th e t ranspose. 
and are ordered by 

The eigenvalues A; are positive at a maximum 

XI 1 -b 2 x.9. (4.1) 
The condition that the extremum be a maximum is therefore simply X3 2 0. The density of maxima 
is 

444 = ( 6(Floo - ~1 I~1~2&4 ‘3(b) 6(f) ), (4.2) 
where the average is taken using the probability distribution p(F,q,<). The density of minima is 
related to that of maxima by J,,+(Y) = A&(-Y). 

(3) Partial integrations of this expression are of acme interest, since they tell us about the distribution 
of shapes near the peak, where F(r) EJ F(0) - c Xirf/2. This is discussed in 57. We have obtained 
au analytic expression (equation A1.14) for Upk(v,z), where z = (X,+X1 +X3)/o, ((I~ is a parameter 
defined in $4.2). The integral over z must be done numerically. 

(4) We express the (comoving) differential peak density in terms of a function G(7, UJ), where w = vv, 
and 7 is a spectral quantity defined in 54.2: 

%h)d~ = (2r;ZRz e-y =I2 C(7,7v). (4.3) 

The (comoving) length R. is also defined in $4.2. The explicit form of G is given by equation (A1.19). 

(5) The following fitting formula designed to agree with the asymptotic large v behavior is accurate 
to better than 1% over the range 0.3 < 7 < 0.7 and -1 < KJ < co of cosmological interest, with the 
accuracy increasing to better than one part in a thousand for w > 1: 

G(r,,,) = (w3 - 37’~ + [B(r)w’ + C1(7)1e~p(-A(r)w’) 
u+ G(7)ezP(-G(+Y)w)) 

The coefficients A and B are taken from the asymptotic expansion and the C; are fits: 

B = (tOn)‘/1;:2 571)6/a ’ 

Cl = 1.84+ 1.13(1- -#-, 

C, = 8.91+ 1.27 e~p(6.517~), 

C, = 2.58 e~p(1.057~). 

(4.4) 

(4.5) 
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4.2 SPECTRAL PARAMETERS 

The peak density equation involves the parameters 7 and R. which are related to various 
moments of the pswer spectrum P(k) = ( IF(k)la ): 

(k*) 4 -=- 
’ = (k4)‘/2 ~200 ’ 

R. = 62. 

Here, the mean square density fluctuation at time t is 

-30” (t) z J sP(k,t) = c(O,t) E (F(r = 0,t)‘). 

(4.6a) 

It is convenient to extrapolate F by linear perturbation theory to the present (t = to) to define 
cro(to). Thus, m an Einstem-desitter universe, the redshift at which the rms density fluctuations went 
nonlinear is given by 1 + .z,l = oo(to). The z,l-expression is more complicated for n < 1 universes 
due to the deviation of the perturbation growth law from (1 + .z)-‘. The parameters 01 and 01 are 
members of a set of spectral moments weighted by powers of k*: 

f+(t) z J sP(k,t)k’j. (4.6~) 

Of course, since the density field grows in a self-similar way in the linear regime, the ratios ai/oo are 
time independent. Thus 7 and R. and hence the comoving density of peaks do not depend upon the 
time at which the density is measured. They only involve the moments 

(k’) = u:/u; = 3(7/R.)‘, 

(k’) = o;/u; = 97=/R;‘, 
(4.6d) 

which are -3[“(O)/[(O) and 5@‘“)(O)/E(O), respectively, when expressed in terms of derivatives of 
the density correlation function at zero separation. Notice that the peak density only depends upon 
the spectrum through 7 except for the overall multiplicative volume term Rf. The value of 7 reflects 
the range over which k’P(k) is large, since ((Akz)2)1~z/(kZ) = (7-l - l)‘/’ measures the relative 
spectral width. If P is a delta-function then 7 = 1, whereas, if k3P is constant over a wide range of 
k, then 7 is much less than unity. 

Gaussian smoothing of the random field F( 3 r on the comoving scale Rf leads to the new field 

F(,-; R,) = J ezp(-IT-- F’f/2R;) F(r”) (2;;$2 I 
whose Fourier components and power spectrum are Gaussian-filtered on this scale: 

F(k; R,) = ezp(-R;k2/2)F(k), P(k; R,) = e-+‘P(k). (4.3) 

For the special case of a power law spectrum which has a Gaussian filtering, 

P(k; R,) - k” ezp(-(kR,)‘), (4.9) 

the rma fluctuations scale with the filtering length as 

ac,(R,) o( R;(“+3)‘2 

9 
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and the other spectral quantities are given by 

c+R,)/c+(R,) = VR;‘, cr;(R,)/c$(R,) = (n+5k(n+3)R;4, 

q2=(n+3)/(n+5), R.=( -&)1,2R,. 
(4.10b) 

The number density is therefore cc R;“. 

Another popular filtering choice is top hat smoothing: 

FTH(<R=~) = J #(I- I?- rl’l/Rm) F(r”) (4X;; ‘,3) , 2-H 
FTH(k; RTH) = W(kRTH)F(k), PTH(k; RTH) = W’(kRTR)P(k), W(z) = 3(&z - zcosz)/z3. 

Here, 0 is the Heaviside unit function. Sharp k-space filtering on the scale k, leads to the smoothing 
function (k~/(Gz?))W(k,r). In both cases, the sharpness results in oscillations in the correlation 
functions in the conjugate space which have significant amplitudes out to many times the cutoff 
scale. Gaussian filtering avoids this undesirable feature by balancing the smoothing and filtering 
requirements in an optimal manner. The identification of a given RTH with an equivalent R, depends 
upon which features of the fluctuation we are most interested in. For example, the mass enclosed by 
the smoothing function applied to the uniform background is the same for R, = 0.64R~~. 

In Fig. 4.1, we plot the parameters 7 and R. for two currently popular spectra, one corre- 
sponding to the adiabatic cold dark matter (CDM) model (Peebles 1982, Blumenthal and Prima& 
1984, Bond and Efstathiou 1984, Bardeen 1984), the other corresponding to the isocurvature axion 
CDM model (Bardeen 1984, Efstathiou and Bond 1985). The transfer functions corresponding to 
these cases, and also to hot and warm dark matter, are given in Appendix 7. The initial conditions 
for the density fluctuations were taken to be the Zeldovich spectrum (n = 1) for the adiabatic model 
and flicker noise (n = -3) for the isocurvature axion model; both forms are predicted to arise in 
inflationary models. (For the Zeldovich spectrum, it is the gravitational potential which has the scale- 
invariant flicker noise spectrum.) The fluctuations evolve as the universe expands, leading to spectra 
with effective power law indices (n.,,(k) z d In P(k) /d In k) ranging from -3 on small scales up to 1 
on large scales. On galactic scales (R, - 0.5 h-‘Mpc), the index is - -2 for the adiabatic spectrum 
and N -2.5 for the isocurvature one. The moments of the spectrum clearly favor those wavelengths 
near the filtering scale, so the value of 7 will reflect the value of neff at this scale. Indeed, n,,f should 
be defined by equation (4.10b) for a given R, in order to use it in the peak density formula. In Figure 
4.1, we also plot log uo(R,). Thus, Fig. 4.1 can be used to determine the relative epochs at which 
different scales go nonlinear. 

4.3 DIFFERENTIAL AND CUMULATIVE DENSITY RESULTS 

To illustrate the results we have plotted the differential number density for various values of 
7 in Fig.4.2. Typically, there is a broad peak for maxima with heights about equal to the runs, 
v - 1. Note however that for small 7 - 0.3, rz’~~ - -2.8, the peak is v - 0, reflecting the fact 
that on all scales, there is significant power, so there are many peaks even below the rme. For large 
7 N 0.9, n.ff N +5.5, all the power is at short wavelengths, and the peaks are therefore relatively 
isolated and typically quite high (V - 2). In all cases, the falloff is steep beyond Y - 2. The cumulative 
number density of peaks higher than height V, 

n&) = J “- -%&k 
is plotted in Fig.4.3. The asymptotic cumulative number giving the comoving density of peaks of 
arbitrary height is a useful quantity which can be evaluated analytically: 

29-64 
npL(-m) = 53/22(2a)lR? = o.o16R;3. 

10 



The fraction of peaks above a threshold can therefore be read off Figure 3. It can also be computed 
using equation (4.21) below. 

A physical selection criterion for peaks which would form a given class of objects is unlikely 
to be so sharp as to make nrb(~t) the relevant density, where IJ~ is the threshold height. Instead, we 
might introduce a selection function t(v/vt), which gives the probability that a peak of height Y forms 
one of the objects. The number density would then be 

=,k[t] = J m+‘/~t)&(L’)d~ 
0 

For the sharp threshold, the selection function is a Heaviside: t(v/vJ = b’(u - vt). Consider instead 
the class of functions 

(4.13) 

which also select sub-vt peaks, though with low probability. (We will usually let n,,.(r+) denote the 
density 4.12 if the selection function is of form 4.13.) The q -+ co limit reproduces the sharp threshold 
case. If q is too small, low peaks dominate even if the probability of their selection is small, due to 
their large abundance. These effects are illustrated in Fig. 4.4. 

4.4 THE HIGH PEAK LIMIT AND THE EULER CHARACTERISTIC DENSITY 

In the limit of large 7~, the function G gives the high peak limit 

U,,k(v)dv -+ ((k;;$p2 (Y’ - 3v)e-v’/adv as Y-+00, 
(4.14) 

%kk) -+ 
as v-+00. 

This result agrees with the expression given by Doroshkevich (1970) and Adler (1981) for the high 
peak limit. It is clear from Fig. 4.2 that this approximation is not accurate for moderate values of y. 

As discussed by Adler (1981), a useful approximation to the number density of extrema (or 
maxima) lying above a high threshold vt should be given by (one half of) nx(r+), the density of the 
Euler characteristic. The Euler characteristic for a scalar field F is defined to be 

,y E number of mazima + number of minima - number of saddle points 

of the density contour surface F(r) = vtoo. To define maxima and minima, we require that a 
direction be specified. Locally, the 2-dimensional surfaces can be defined by z3(z1, zr), where the s3 
coordinate has been singled out as the dependent variable. x can then be calculated in this chosen 
coordinate frame. Of course, the result is independent of the particular choice of the coordinate axes 
and dependent variable, due to the isotropy of the random field. Following geometrical considerations 
similar to those in $3, the mean value of x per unit volume is 

n,(v) = ( 6(F - woo) lml (GICZZ - CA) ) (4.15) 

(Doroskevich 1970, Adler 1981), where nr = ~2 = 0 in the averaging procedure. This integral is 
straightforward to calculate (Appendix 1) once the Gaussian probability distribution 

has been evaluated: 

p(F,ij,hr, hz, s*l)dFd’ijdslldhlds~zZ 

(4.16) 
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Except for the multiplicative factor out front, this agrees with Doroshkevich’s (1970) expression. 

For large values of I+ (in units of the rms) these contour surfaces become predominantly simply 
connected ‘bags’ surrounding those extrema whose heights exceed the level z+ and which are almost 
surely maxima. Thus, in the high vo limit, the Euler characteristic counts one minimum plus one 
maximum for each bag, i.e. for each field extremum, so nx must approach t&e the asymptotic limit 
of npk(vt), equation (4.14). However, neither provides an accurate estimation of peak density over 
the regime of cosmological interest. Indeed, for 4.16 to reproduce 4.11~~ with 10% accuracy, 7~ > 2.5 
is required. 

4.5 THE NUMBER DENSITY OF UPCROSSING POINTS ON CONTOUR SURFACES 

A more accurate formula in the regime of cosmological interest for the integrated peak density 
can be obtained analytically by evaluating the density of e. special class of points which are general- 
izations of the upcrossing points defined by Rice (1944). 0 ne of Rice’s most useful analytic results for 
one-dimensional Gaussian fields was the number of upcrossings of a given threshold level that occur 
per unit ‘time’; that is the density of points satisfying P = F,, dF/dt > 0. Adler treats the Euler 
characteristic density aa the appropriate generalization of thii concept to multiple dimensional fields. 
We believe there is a natural class of points for isotropic random fields which better generalize the 
Rice points. These upcrossing points CU lie on the contour surfaces of threshold Ft. Aa in the Euler 
characteristic case, we again choose a specific direction and label it the zs-axis. These points belong 
to the set 

{r;lF(?J = Ft,y , O,F z.z 0, p zz 0). (4.17) 

For given ur a set of disconnected bags each of which is generally multiply connected are defined. 
As we travel upward from negative to positive ZQ, the upcrossing points are those points on the bag 
tangent to the 21 - zs plane from which the high v interior of the bag is entered when zs is further 
increased. 

The statistics of the point process 

n”,(q =X6(?- F”) 
” 

can be evaluated using the methods of $3 (equation 3.4), where our 3 variables are now yl = ql, y, = 
~2, and VJS = F, not 1)~. The determinant of (yi,j) is ea4y to evaluate. The point process is transformed 
into 

Q@I = VW - Ft) 6(n(r3)6(sz(~hsl lsussz - &P(m). (4.19) 

The mean value is very similar to the Euler characteristic expression except that the absolute value 
of the c-determinant is required and downcrossing points are excluded: 

(fi&t)) = ( 6(F - wo) lrlsl o(m) hss - s&l ) 

44 s-z,‘“:/ls) e-Y’=/1. (4.20) 

57’(1-5-p/9)‘/* 

The evaluation is given in Appendix 1. The extra exponential term ensures that nUP is always positive. 
Note that the result is symmetrical about IQ = 0 reflecting the fact that the contour interiors for 
negative vt are ‘inside-out’ versions of those for positive v*. Thii is in contrast to the peak density 
which is, of course, asymmetric. Nonetheless, (4.20) reproduces (4.11) with better than 10% accuracy 
for v > 2.57 and better than 1% by 37. Even for I+ SY 0 (4.20) is never very far 06 by then, the total 
peak number, equation (4.11b), is a good approximation. 

The fraction of all peaks larger than height vt is therefore approximately the ratio of equations 
(4.20) and (4.11b) 

f(> vi) FJ 1.567’(~t’ - l+ 44 
572(1- 572/9)‘/2 

e--67’$/18) e--v*‘lz, vt > 2.57. (4.21) 
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For very high thresholds, the number of upcrossing points provides a good estimate of the 
number of disconnected contour surfaces. An estimate of the average volume enclosed within one of 
these high contours can then be obtained by taking the ratio of the volume filled by those points above 
threshold within a volume V, VP(> vt) = V erfc(vJfi)/2, to the number of upcrossing points in 
the volume, ny,,(vt)V: 

VO~(VJ = P(> vt)/nup(vt) + (%T)~/~(R./~)~ q3 (25 vt -+ M. 

Therefore, the linear scale of the contour ‘begs’ decreases as v;‘. 

4.6 THE AVERAGE VELOCITY DISTRIBUTION FUNOTION FOR PEAKS 

Peaks move with e peculiar velocity 3. The distribution of velocity is given by the distribution 
function 

f&C 6) = 6(<- 4,) n&T, (4.22) 

where n,k(r’) is the peek density ‘operator’ (equations 1.1 end 3.3). The statistical average of this 
expression is easy to obtain since, et any point, v’ is only correlated with ri’, 
pendent of the integration variables Y, $. The average distribution function 

being statistically inde 

(fp#,V;v))d~d3~d3t, = [2~~~,,3]3/3(1 _ 7~)3/2 d3v U&)dvd3r (4.23) 

implies e conditional probability for the velocity of peaks 

P(,l4 peak) = (f&l v’, ~))/A$&) (4.24) 

which differs from the peculiar velocity distribution of ambient field points 

P(i7, field point) = 
ezp[-~v~/crlJ 

[2n&/3]J/” 
(4.25) 

through the presence of 

7”‘L!L. 
~-1~1 

(4.26) 

Here, o-1, defined by equation (4.6~) for j = -1, is the J-dimensional velocity dispersion of field 
points. Peaks have( 1~7;~ peculiar velocities than field points. For Gaussian filtering of power ]a~ 
spectra, ~-1 u Ry n end 7’ = (n + l)/(n + 3), n > -1, reflecting the fact that velocities are 
correlated over much larger distances than densities. 

Such quantities as the distribution of line-of-sight velocity differences as a function &projected 
separation ere of greet interest for comparison with observations. However, they are quite difficult to 
calculate and are not considered in this paper. 

5. SPATIAL MODULATION OF THE PEAK NUMBER DENSITY 

In this section, we first discuss some of the issues and difficulties in relating observed coa& 
structures to the peaks determined from the filtered linear perturbation spectrum ($5.1). A particu- 
1 1 ar y simple selection criterion is adopted, which identifies a given class of cosmic objects (e.g., luminous 
galaxies) with peaks in the smoothed density perturbation field F, exceeding a global threshold level 
Ft. The filtering scale R, appropriate to the class of objects depends on the physical mechanisms 
which set the threshold end on the amount of subsequent infell to be expected, but should correspond 
to a mass not very much less then the characteristic mass of the objects. The motivation for this kind 
of selection criterion applied to galaxies end rich clusters is discussed in 55.2. 
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The number density of peeks above such e threshold depends strongly on whether the large 
scale environment in which the peek resides is overdense or underdense. To illustrate this, we show 
in 55.3 how the number density of peeks above threshold changes when the density perturbation field 
is biased by en externally imposed background level fb. 

The overdensity in a cluster or supercluster is not en externally imposed density excess. Rather, 
it comes from smoothing on a large scale Rb the same random field whose peeks when smoothed on 
the scale R. are associated with galaxies. Depending on just how the field is smoothed on the larger 
scale, there ere varying degrees of correlation between the smell scale random field F. end the large 
scale random field Fs. The number density of peeks above threshold et places where the field Fb has 
a given value is derived in Appendix 5 end discussed in $5.4. The ambiguity in the definition of F, 
makes application of this formalism to estimating mass-to-light ratios in clusters of galaxies imprecise. 
We argue that e top hat smoothing for Fb probably best corresponds to the way clusters are defined 
observationally, end present some numerical results which suggest that en enhancement by - 5 in the 
number of galaxies per unit mass in rich clusters compared with the universe as a whole is plausible. 
Therefore, e global density parameter I-l = 1 may not be inconsistent with virisl mass estimates for 
rich clusters even if there is no separation of baryons from dark matter on large scales. 

5.1 SELECTION CRITERIA FOR COSMIC STRUCTURES 

As we have discussed in the introduction, we wish to identify the sites of formation of conden- 
sations of mass u M with the local maxima of the initial density field when smoothed over e filtering 
scale RI where M o( R;. The structures that have formed by time t will be among those that have 
gone nonlinear F(Rf, t) = u(Ry)oo(Rf, t) 3, 1. By itself, this is e threshold criterion. Other criteria 
would presumably have to be satisfied as well. 

Once oe is fixed et some scale (e.g. that of bright galaxies) et some time (e.g. the present), it 
is known et all other smoothing radii from the power spectrum, end et all other times by the linear 
fluctuation evolution law. That is, once the spectrum end cosmological parameters ere set, the only 
other free parameter determines the overall spectrum normalization. One may take this to be, for 
example, the ‘redshift of galaxy formation’. For a given smoothing scale, the nonlinear threshold 
function ~;‘(RJ, t) decreeses with time, so peeks of progressively lower height v > crl will have 
begun to collapse. In hierarchical scenarios, 00’ is a monotonically increasing function of R,. For the 
adiabatic end isocurveture cold dark matter spectra, Figure 4.1 shows log(rro(RI)) up to e constant 
which would be fixed by the normalization criterion. At a given time, only rare high v large scale 
objects would have gone nonlinear though even rms fluctuations may have collapsed on smeller scales. 
Even on the smeller scales, it may be that only rare high Y peaks form observationally interesting 
structures with the rma peeks (V FY 1) forming under-luminous objects. 

The sort of objects that these nonlinear structures form depends upon the details of the astro- 
physics of collapse. Ideally, there would be a unique selection function in v - R, or F - A4 space 
for each type of cosmic object. This simplified view is et the heart of the extensive applications of 
the influential spherical top hat model of Gunn end Gott (1972) to hierarchical scenarios by Gott 
and Rees (1975), Rees end Ostriker (1977), White and Rees (1978), Peebles (1980), Faber (1982), 
Silk (1983) end Blumenthal etal. (1984), among others. We discuss this model in more detail in 
55.2. However, such applications neglect one of the central difficulties in working with hierarchical 
random fields, the cloud-in-cloud problem that within clouds centered on peeks determined after large 
scale smoothing are smeller scale clouds which are themselves made up of subclouds. Though such 
substructure is smoothed away, the details of it may be crucial in determining the nature of the fi- 
nal object that forms. For example, stars may form in the subclumps end become supernovae early 
enough to blow away the gas before the larger scale fluctuation collapses; or, mergers of subclumps 
within the smoothed cloud may be deciding influences. The environment may also play a large role 
in determining the final object which forms. For example, if angular momentum is crucial, then the 
position end height of neighboring clouds may be necessary information to determine the degree of 
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tidal-torqueing (though the local tidal field smoothed on large scales might suffice). The asymmetry 
of the peak will certainly play a role if angular momentum is important, and will be significant for 
such issues as degree of ellipticity of the final object. 

In this paper we focus mostly on the density and distribution of points required to be peaks 
of the smoothed density field with a certain height or range of heights. The statistics of these points 
is that of the point process n+.(rT = C,S(?- Tp) defined in §l. In principle, we can select the 
points <p according to any prescription necessary to define the local initial conditions required to 
make a given class of cosmic objects. This may prove tractable if the added criteria are not too 
complex. For example, background field constraints are discussed in $5.3, and shape constraints are 
discussed in 57. An angular momentum constraint might also be amenable to a statistical treatment. 
However, ellipticals forming as a result of the merging of two spirals will surely not represent an 
analytically tractable class. Nonetheless, even in this case, analysis of numerical N-body studies 
within the framework of constrained point process densities should prove useful. 

We regard the filtering operation as essential in dealing with fluctuation spectra with power 
covering a wide range of scales. Otherwise, the statistics is dominated by the smallest scale phenomena. 
However, the best choice of smoothing for a given astronomical object is debatable. One of the major 
difficulties with filtering the density field is that, in some cases, peaks on larger filtering scales may 
just be smoothed versions of peaks on smaller scales. This problem is especially acute for steep power 
spectra with high n, for most of the clouds are intrinsically of small scale. Fortunately, the cold dark 
matter spectra that we use throughout this paper to illustrate the use of our statistical results are 
not overly plagued by this difficulty due to their being relatively flat on small scales. The structure 
and average density of the peaks is predominantly determined by the nature of the spectrum near the 
filtering scale provided it is monotonically decreasing (54.2). Nonetheless, the optimal choice of fiIter 
function is debatable and conclusions drawn which are sensitive to the specific choice are suspect. 

The mass function for a given class of objects n(M)dM would be highly desirable to obtain. 
Unfortunately, due to the cloud-in-cloud problem, we have not come up with an adequate de&& 
tion. The obvious choice, analagous to that given by Press and Schecter (1974), is n(M)dM = 
i(dn,k/dlnRf) dM/M, with the total derivative including partial derivatives with respect to t+(R,), 
7(R,), and R. (Rf). However, thii choice ignores the strong correlation between small mass clouds 
and large mass clouds that we derive in $5.4 and does not include the loss of small scale objects due 
to incorporation in larger ones, the essence of the hierarchical process. 

In spite of the difficulties associated with the identification of pro&objects in the smoothed 
linear density field, and, if appropriate, in Y- Rf space, we feel our method offers a powerful approa& 
within which to test in detail the viability of simple hypotheses for structure formation. 

5.2 GLOBAL THRESHOLDS 

Here and in 56, we explore the properties of that subset of peaks which have initial amplitude 
above some threshold value ut, typically - 2 - 3. We specify that the threshold should be global, by 
which we mean that it should be constant throughout the whole of space. 

Abell’s rich clusters are an example of a set of objects which may reasonably be associated with 
high peaks above a global threshold. It is fairly clear that in these objects, which contain only a small 
fraction of all galaxies, we are seeing the high msss end of the distribution of those perturbations 
which had sufficient amplitude to have collapsed by now. The selection criterion is therefore that 
the linear extrapolation of the height of the peak in the density perturbation field, smoothed on an 
appropriately large mass scale, should exceed a value fC, corresponding to complete collapse at the 
present time to: vt > focr;‘(R~, to). Such a threshold is certainly global. 

For spherical top hat models, the perturbation turns around at F = 1.06 and is completely 
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collapsed when F is 

f. = ;($)“” = 1.69. (5.1) 

The collapsing structure virializes at half the radius of maximum expansion. This would give a density 
contrast at the time of ‘complete collapse’ of about 170. For an isolated structure, the density contrast 
would grow as (1 + .z-” thereafter. These results hold for a flat universe, Cl = 1. In a low density 
universe, collapsing structures virialize at a density contrast which is, very roughly, f2-’ times larger 
than in the flat universe. 

The simple spherical top hat model is clearly an unrealistic idealization. We will discuss the 
expected shapes of peaks in $7. Anisotropy will be amplified as the collapse proceeds and, at least 
for collapse without substructure, high densities will first be reached in a planar configuration, as 
discussed by Zeldovich (1970). However, in order to form a compact configuration, such aa a rich 
cluster of galaxies or an individual galaxy, it is necessary to collapse in all three dimensions. We feel 
that equation (5.1) is a reasonable estimate of the linear density contrast required for such a collapse 
to have occurred. In this regard, it is encouraging to note that within an Abel1 radius of the center of 
a rich cluster, a scale which Abel1 clearly felt characteristic of the extent of these objects, the mean 
density is around 200 times the critical density, in good accord with the simple theory. 

The same collapse criterion could also be applied to galaxies. Bright gal&es may tend to form 
preferentially around high peaks, with the collapsed structures of lower v forming underluminous 
galaxies, or structures not recognized as galaxies at all. This hypothesis has been termed biased 
g&zy formation. The suggestion is that bright galaxy formation is a ‘self-limiting’ process, 80 that 
once a small fraction of material has turned into galaxies by a time t, (redshift z,), the conditions in 
the external medium are modified sufficiently to suppress the formation of bright galaxies elsewhere. 
With fC the linear extrapolation of the height of the peak to the time of complete collapse and R, the 
galactic filtering scale, the threshold now becomes 

vt = fe~;l(Wg) = f& + ~b)&(R.,to). (5.2) 

One can imagine many processes by which newly forming galaxies can influence their environ- 
ment, including heating by radiation, shocks or energetic particles (e.g., Reea 1985 and Silk 1985). 
However, not all of these may give rise to segregation of the kind we are discussing here. If, for 
example, the feedback mechanism is of limited spatial range, then it is inappropriate to model the 
effect by a global threshold. Unfortunately, it is difficult to develop a convincing case for any partic- 
ular threshold mechanism, given our poor understanding of the details of star formation and galaxy 
formation. 

The feedback mechanism cannot be expected to take full effect instantaneously, so the physical 
threshold will not be perfectly sharp. The threshold function t(v/vt) introduced in equation (4.13) is 
our attempt to model this in an ad hoc way. The threshold level pt is defined so that the probability of 
a peak becoming a ‘galaxy’ is l/2 when v = vt. Since the differential number density of peaks increases 
rapidly with increasing v for v > 2, unless the threshold function is fairly sharp more ‘galaxies’ may 
form from peaks with v < vt than from peaks with Y > I+. 

An important constraint on the choice of vt (or on the consistency of the model if vt is deter- 
mined from other considerations) is that the number density of peaks meeting the threshold criterion 
be at least roughly equal to the number density of the class of objects one is trying to represent. The 
I+ thus chosen will depend on the filtering scale R. used to pick out the peaks and on the sharpness 
of the threshold, through equation (4.12). 

The precise relation between the galaxy filtering scale R. and the characteristic mass of luminous 
galaxies in the present universe is not obvious. The maas enclosed by a Gaussian smoothing function 
is 

M, = (27r)“‘pR; = 4.37 x 10” R,S h-’ Ma, (5.3a) 
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and for top hat smoothing is 

MTH = (4n/3)pR&, = 1.16 x 10” R& h-’ M,, (5.3b) 

with R. and RTH in units of h-‘Mpc. While R. slightly less than 1 h-‘Mpc would give a mass 
(including the dark halo) characteristic of present luminous galaxies, the threshold is presumably set 
considerably before the present, and the mass collapsing at the earlier time might be considerably 
smaller. Average density profiles around peaks (57) suggest that a significant amount of mass will be 
associated with a high peak in excess of that given by equation (5.3a). On the other hand, if R. is 
too small, the correspondence between peaks above threshold on the scale R, and present galaxies 
will not be at all one-to-one, due to merging of neighboring peaks and deviations from the average 
profile. Our threshold hypothesis is at best a crude representation of what a complicated process of 
galaxy formation implies for overall average properties of galaxies. 

Some attempts have been made to associate the morphological type of the galaxy with the 
height of the peak in the density perturbation field. Blumenthal etal. (1984) have argued that high Y 
peaks are relatively isolated, are therefore less subject to tidal-torqueing, and are more likely to become 
elliptical galaxies. However, tidal-torqueing is a local process, so the height of the peak relative to the 
global ee is not relevant. The argument would suggest that there should be fewer low spin objects in 
the high density environment of a protocluster, contrary to observation. An alternative explanation 
for the distinction between ellipticais and spirals is that elliptical galaxies form from mergers of smaller 
scale peaks, while spirals form from relatively isolated peaks which are able to accumulate mass by 
infall over a substantial range of radius. This would also associate ellipticals with higher v peaks 
smoothed on the mass scale of the final galaxy, but the difference in apparent angular momentum 
would be due to different degrees of radial infall of baryonic matter. 

5.3 MODULATION OF NUMBER DENSITY BY A BACKGROUND FIELD 

The field F.(?) defines a population of peaks, and a global threshold vt selects a subset of 
these peaks with a certain global number density n,e(r+). However, one is often interested in the 
local number density of a class of objects, such as the density of galaxies in a cluster or the density 
of clusters of galaxies in a supercluster, and the relation of this local number density to large scale 
variations in the density perturbation amplitude. Here we consider adding an external, statistically 
independent background field fb to F., with the understanding that fb is a slowly varying function 
of position compared to the mean separation of the peaks in F.. The number density of peaks of 
the combined field above the spatially uniform threshold characterized by vt will depend on the local 
value of fb and therefore will fluctuate on large scales. The number density will be enhanced where 
fb is positive and suppressed where fb is negative. This construction will prove useful for calculating 
correlations of galaxies on large scales in 56, but, as we shall see in $5.4, it is not appropriate, except 
for providing qualitative insight, if the background is the large scale density perturbation associated 
with a particular cluster of galaxies. 

Let E( fb) be the ratio of the local number density of peaks in the presence of fb to the global 
number density with fb = 0. To calculate the local number density, note that the combined field 
exceeds the global absolute threshold ft when F. exceeds a local threshold ft - fb. In terms of Y, the 
local threshold is then it - fa/ooe. In the limit fb is approximately uniform on the scale R., such 
quantities as 7 and R. are unaltered, and the enhancement factor is just 

E(fd =%&t - fb/%)/n&t). (5.4) 

For a perfectly sharp threshold in the limit TV~ >> 1, equation (4.14) is a good approximation 
to nrk(~t). Substituting this expression into equation (5.4) and keeping only the leading term, we find 

E(fb) m e&'tfb/%), for fb ==C goa, and Vt >> 1. (5.5) 
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The enhancement can be highly nonlinear in fb even though fb may be small compared with one at 
the time galaxies form. 

Unfortunately, equation (5.5), while qualitatively correct, is not quantitatively accurate for the 
range of vt relevant to galaxies. We find that a Taylor series expansion of In (E), keeping only the 
terms which are linear and quadratic in fb, 

E(fb) ==p [+t,$(fb/%) - +'t,~)(fb/%)2] , (5.6) 

is a good approximation as long as vt > 2. The coefficients Q and p also depend upon the sharpness 
of the threshold, as characterized by the index Q (equation 4.13), and are obtained by differentiating 
equation (4.12) inside the integral and integrating by parts: 

o= +I J ~~&~7hkW, 
p=(*z-. J d%(u) 

~&(~;7)lnpL(%). 
(5.7) 

Table 5.1 shows how these parameters vary with p and ~6. A perfectly sharp threshold (q = CO) 
has the largest value of a for a given vt, and therefore the most rapid increase of peak density with 
fb, but this maximum a is still less than the value LI = ZQ as estimated from the high threshold 
limit enhancement factor, equation (5.5). Equation (5.6) is accurate to within a few per cent out to 
fb/Q. FJ 1 for ut w 2 and out to fb/Q. e 2 for Yt RJ 3.5. 

5.4 THE SEGREGATION OF ‘PROTOCALAXIES’ FROM THE MASS 

The enhancement E is a strongly increasing function of fb, particularly if the ‘galaxies’ contain 
a small fraction of the mass, so V* is high. Notice also that the quadratic term in equation (5.6) reveals 
an asymmetry. For fixed 1 fbl the suppression factor in a ‘protovoid’will exceed the enhancement factor 
in a ‘protocluster’. The enhancement factor saturates when the local effective threshold is small and 
almost all the peaks are counted as ‘galaxies’, but there is no upper limit to the suppression factor in 
a ‘void’. 

In the global threshold model ‘galaxies’ are born with large scale clustering which gives a 
distorted picture of the mass density contrast. One can think of the galactic peaks as having been 
‘painted on’ to their Lagrangian sites at early times. The Lagrangian points flow through Eulerian 
space toward msss concentrations, carrying the painted points along with them. The ‘painted on’ 
density contrast has the same sign se the true mass density fluctuations and so the ‘galaxy’ clustering 
will always exceed that of the underlying density field which is determined solely by gravitational 
forces. 

One might be able to observe the effects of this statistical enhancement directly, before there has 
been considerable dynamical evolution on the scale of the clusters. This would be the case for galaxies 
observed at high redshift: a protocluster would appear as a strong galaxy density enhancement even 
though the underlying density contrast wss small at that time. Similarly, a supercluster at the present 
time may appear as a strong enhancement of rich clusters. In other applications the mass density field 
will be nonlinear. We can still obtain the number of ‘galaxies’ per unit mass, and the overall number 
density can then be determined if we know the motion of the mass. 

The high it result of equation (5.5) gives a very rough idea of the parameters required to obtain 
a strong non-linear enhancement of the galaxy density within a protocluster. Model the cluster as 
an externally imposed ‘top hat’ field with amplitude just sufficient to collapse by the present. The 
condition for non-linear enhancement, vt(fb/UOa) > 1, is satisfied provided 

v: > lfze, (5.8) 
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where ,rg is the redshift at which peaks associated with galaxies collapse. Note that this condition is 
independent of the mass of the protocluster and the present rms amplitude of density fluctuations on 
the cluster scale. Since only collapsed systems are amenable to virial analyses, there is a lower limit 
to measured galaxy-per-unit-mass ratios and presumably a corresponding upper limit to measured 
mass-to-light ratios. Such an upper limit does seem to be present in the galaxy cluster data. While 
the upper limit hss been interpreted ss evidence for !I < 1, we see that it has a natural interpretation 
in an Cl = 1 universe. 

There are a couple of reasons to think that the enhancement factor in this externally imposed 
‘top hat’ protocluster model, ss calculated from equation (5.6) rather than from the crude approxima- 
tion of equation (5.5), is an underestimate of the enhancement in a real protocluster. A more realistic 
model would not have a uniform density excess in the protocluster volume, and the average of an 
exponential is greater than the exponential of the corresponding average. Perhaps more seriously, a 
protocluster is not an externally imposed background. It is defined by a large scale smoothing of the 
same density perturbation field F which is smoothed on a smaller scale to get the field F.. 

Let Fb(?) denote this large scale smoothed field. At least roughly, a region which has collapsed 
by the present is a region where the average overdensity of the extrapolated linear density perturbation 
field is greater than a value fc. For a spherical collapse fe = 1.69, and the appropriate average is 
over a sphere centered on the protocluster containing a mass equal to the final collapsed mass. Thi 
suggests defining Fs by a spherical top hat smoothing of F. Of course, actual collapses are usually not 
spherical, but the spherical model should be a reasonably good guide as to what sort of overdensity is 
required to produce an Abel1 cluster, as discussed in $5.2. (See $4.2 for the power spectrum associated 
with top hat filtering.) 

In Appendix 5, we derive J&(Y., ve)dv.dvb, the joint probability per unit volume that there 
is a peak in the F. field with height Y. z F./u o. in the range dv. and that the background field 
has height vb E Fb/Oob in the range due at the peak (equation A5.5). The differential number 
density of peaks at a point where V& has a specified value is the conditional density (equation A5.11) 
&k(v&b) = &k(b,L’b)@+‘* ezp(v~/2), and the local number density of peaks satisfying a global 
threshold criterion is 

npk(+b) = J -dv. +./%) &k(+b). 
0 

(5.9) 

The enhancement factor is 

%‘b) = npk(“tivb)/npk(l’t). (5.10) 

Numerical evaluation of equation (5.9) is straightforward since the form of the integral is similar to 
the standard number density integral. 

The enhancement in &pk(V.Ir+) is much greater for the higher peaks than for the lower peaks. 
If elliptical galaxies are associated with high v peaks, this could be part of the reason ellipticals am 
much more common in rich clusters than in the field. 

Numerical results for the enhancement factor are sensitive to the smoothing function used to 
define F,, even when the background scale Rb is very large compared to the scale R. of the peaks. 
The parameter E EZ (Y,v~) is a measure of this, since in the high threshold limit E(Q) = ezp(vtcvb). 
For a sharp filter in k-space defining Fb, L = U#Jb/CQ,, leading to r esults similar to those in 55.3, but 
the corresponding smoothing function is an oscillating spherical Bessel function. For a Gaussian filter 
e .u 2(“+‘)/’ oes/oe. where n is the effective spectral power law index on the background scale Rb: 
Top hat smoothing in real space gives intermediate results. We feel that top hat smoothing makes 
the most sense physically for treating rich clusters, though this is certainly debatable. 

Another problem is that a top hat centered on the cluster gives an expected number density 
for a point near the center of the protocluster, which may be an overestimate of the average number 
density in the protocluster. Also, such a top hat may not be representative of all points with the same 
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value of Fe. In order to resolve some of these uncertainties it may be necessary to resort to numerical 
realizations of these random fields in which the relevant quantities can be directly measured. 

Some numerical results for the enhancement factor E are presented in Table 5.2. The examples 
are from Table 6.la (see also Fig.G.la). The perturbation spectrum is the adiabatic one appropriate 
to cold dark matter (Appendix 7). In all cases, the cluster-scale top hat has a mass 5 x 10” h-‘MO, 
corresponding to the top hat filtering scale 7.6 h-‘Mpc, and the constrained value Fb = 1.69, cor- 
responding to spherical collapse at the present. For a given sharpness parameter q, the threshold 
level vt is fixed by requiring that the number density of selected peaks equal the number density of 
galaxies in the CfA redshift survey (Davis and Huchra 1982), 0.01 h3Mpcm3. The range of values of 
the enhancement factor comfortably brackets the range desired to make cluster M/Z values consistent 
with a global G = 1. We also give in each case the value of vb determined by normalizing the overall 
density perturbation amplitude to make the present galaxy-galaxy correlation 5 h-‘Mpc, using the 
results of 56. The quantity rt is the redshift of the collapse of a peak of height vt, while zg is the 
average collapse redshift of a peak which becomes a ‘galaxy’. The determination of these quantities 
is discussed more fully in s6.6. 

The values of the enhancement factor would be reduced by about 30% - 40% if we were to 
ignore the correlation between the background field and the high frequency field which generates the 
peaks (i.e., take e = creb/o~.). 

A factor of 5 enhancement relative to the overall galaxy number density 0.01 h3Mpce3 within 
the maes of 5 x 10” h-‘M 0 c orresponds to roughly 90 ‘luminous galaxies’ ignoring mergers of in- 
dividual peaks. Of course, what is perceived to be the cluster would be larger than the completely 
collapsed core. The msss of 5 x 10 i’ h-‘Ma is just a little less than what is contained in an Abel1 
radius if the mass overdensity is 170. 

The values of Vb in Table 5.2 are uncomfortably large, given that rich clusters are not all that 
rare. According to Gaussian statistics, less than 0.2% of the mass should have vb > 3. Things are 
actually somewhat better than this, since a single point of the smoothed density field with F( > 
1.69 can mean a whole cluster will have collapsed. This large value of Vb might be taken M an 
indication there is relatively more power on large scales in the real universe than predicted by the 
simple adiabatic CDM spectrum or as a suggestion that the simple uniform threshold biasing scenario 
needs modification. Of course, a larger value of R TH for clusters makes the problem worse. 

We now discuss some further consequences of the ‘biasing’ hypothesis. The mass-tolight ratio 
for any large system is, according to equation 5.6 or 5.10, determined only by the net initial density 
contrast, and therefore by the final density of the system. Hence the mass-to-light ratios should be 
anticorrelated with the mass density of the system. Applying this test is complicated by the fact that 
mass and density are both derived from virial analysis. In the absence of any intrinsic correlation we 
would expect any scatter in the observed quantities to introduce a correlation which is of the opposite 
sign to that we have predicted. It may therefore be very difficult to disentangle these two effects from 
the data which, at least in the case of very rich clusters, seem to be consistent with zero correlations 
between mass and density (Dressier 1978). 

Another consequence of the hypothesis is that one should observe an increase of M/Z in the 
outer parts of clusters, since Fb goes down. A problem here is that the radial dependence of M/Z 
depends on the assumed anisotropy of the orbits. Kent and Gunn (1978) claim that the data for 
Coma are consistent with constant M/Z and constant anisotropy. A trend of M/Z in the direction 
predicted here would be consistent with the observations if the outer orbits tend to be more radial, 
as would be expected in the type of scenario we are considering. Also, we would only expect to see 
the trend at large radii, since in the inner cluster the galaxies and mass should be fairly well mixed. 
However, at large radii (> 2 h-‘Mpc say) the usual assumptions made in deriving mass-to-light ratios 
are not likely to be accurately obeyed. 

So far we have concentrated on galaxies as ‘rare events’. As noted above, it is more likely 
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that rich clusters can be associated with the high peaks of the initial density field and it is more 
straightforward to estimate V* and (roI than for the galaxies. The filtering scale R. is now taken to be 
that associated with rich clusters (- (7-11) h-‘Mpc for top hat filtering). In this case vJcre* u 3-4, 
whereas for galaxies this quantity is, according to our estimate above, close to unity. Thus, in large 
low-density systems such as superclusters, the density enhancement of clusters (- ezp((vt/oo.)Fb)) 
can be much larger than that for galaxies. Similarly, one can expect that the suppression of structure 
formation in a ‘void’ would be much more complete for clusters and that regions which are devoid of 
clusters would be much larger than those which are devoid of galaxies. 

We have shown here that if galaxies are associated with the high peaks of the initial density 
field then they will be strongly segregated from the mass in all objects which are sufficiently dense 
to have collapsed by the present. The effect is predicted to be much stronger for rich clusters and 
these may be segregated from the mass on much larger scales in systems which are still in the linear 
regime. This segregation means that galaxies may give a strongly distorted picture of the degree of 
matter clustering on cluster scales. We now turn to the clustering statistics for high peaks which show 
that galaxies and other objects may give a strongly distorted picture of the distribution of mass on 
all scales. 

6. CORRELATIONS 

6.1 OVERVIEW 

We now turn to a statistical analysis of the effects of a threshold for galaxy formation on the 
clustering of galaxies. In $5 we saw how a modest overdensity on some large mass scale can lead 
to a strong enhancement in the local density of galaxies. The same mechanism has an effect on the 
statistical measures of galaxy clustering, such as the two-point correlation function. A statistically 
enhanced clustering of small groups of galaxies relative to the mass distribution may explain the 
relatively low amplitude of two-point velocity correlations found in redshift surveys (Davis and Peebles 
1982) compared to what is expected in an n = 1 cold dark matter universe if the galaxies trace the 
mass. Substantial fluctuations in how galaxies are distributed relative to the matter also imply a 
galaxy-galaxy correlation function which would have a significant amplitude even at early times when 
the density perturbation amplitude is relatively small on cluster scales, a prediction which should be 
testable in the near future. 

Complete information about the statistical distribution of galaxies in space is contained in the 
hierarchy of n-point correlation functions (Peebles 1980). Reliable observational data are available 
for the two- and three-point functions. This data is an important constraint on any theory of large 
scale structure in the universe. Correlations between clusters of galaxies probe the structure of the 
universe out to even larger scales. The major goal of this section is to calculate two- and three-point 
correlation functions of galaxies starting from the hypothesis that galaxies are identified with high 
peaks of the linear density perturbation field. The qualitative picture is clear from 55: peaks above 
the threshold are much more likely to occur in regions where on a large scale the level of the density 
perturbation field is greater than zero. 

Our primary focus will be on the initial correlations in the peaks above threshold, before any 
dynamical corrections due to the amplitude of the large scale perturbations becoming larger than the 
amplitude of the statistical fluctuations in the density of the peaks. To linear order in the amplitude 
of the density perturbations it is reasonably straightforward to set up a calculation of dynamical 
corrections, but all we will do here is to consider the simplest case, when the zeroth-order (statistical) 
correlations are small. 

In principle, one can calculate the zeroth-order (in dynamics) correlations exactly using the 
machinery outlined in 52 and 3. The n-point correlation function requires constructing a joint proba- 
bility distribution in 10n variables; at each point the value of the smoothed density field F., the three 
first derivatives ni and the six second derivatives cij. While the covariance matrix for these variables 
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at a single point has a reasonably simple form, there are a large number of non-zero correlations 
between the variables at different points. Even for the two-point function, the task of integrating over 
all of these variables is not pleasant to contemplate. Fortunately, approximations can be made to 
greatly simplify the calculations, and these approximations are reasonably accurate once the correla- 
tion lengths are more than a few times the smoothing radius R. used to define the peaks. 

In the context of a direct calculation of the peak correlations one key approximation is to neglect 
derivatives of the density-density correlation function of F., E(r;j), which appear in the correlation 
matrix. If the density perturbation power spectrum is roughly a power law of index n, then the 
normalized mass density correlation function 

ti,(rij) G E(rij)/E(O) E (J’a(ri)Fa(rj))/~~ (43.1) 

falls off as r-(“+3), while dk$/drk falls off as r-(n+a+kJ. F or values of the index n < -2 the neglect 
of the gradients of + may be justified when 11, itself is still not very much less than 1. 

The only cross-correlations between points which survive in this approximation are 

(V(ri)V(rj)) = $(*ij) = $ij, i # j. (6.2) 

The 8n x 8n part of the correlation matrix involving the first derivatives and the variables describing 
the anisotropic part of the second derivative matrix is now diagonal, and the integrals over these 
variables are identical to those in the average peak number density formula. 

A further approximation, justified if the ~ij are all at least moderately small compared to one, 
allows the integrals over the z(i) o( -VrF.(ri) variables to be done analytically. The n-dimensional 
integral over the v(i) must still be evaluated numerically, but this is quite feasible for n = 2 at least. 

We also discuss an alternative approach to the n-point correlation functions in which the den&y 
perturbation field F., smoothed on the scale R. of interest for the peaks, is considered as the sum of a 
“background” field Fb, filtered on a scale Rb substantially larger than R., and a “peak” field Fr. The 
local density of peaks in Fp is calculated as a function of the local value of Fb using the procedures of 
55. Correlations of this peak density field nrk(?) depend on the probability distribution of Fb, whi& 
in turn can be expressed in terms of the normalized two-point correlation function of Fs with itself, 

d’b(rij) c (Fb(ri)Fb(rj))/&. (6.3) 

Clearly, the local peak density field contains no information about the correlations of peaks at sepa- 
rations less than Rs. Even for separations large compared with Rb the relationship of the correlation 
function of npk to the correlation functions of the peaks in F. is rather obscure, since, strictly speaking, 
the local density of peaks depends upon the precise smoothing function used to define Fb. However, 
the choice of a filter for Fb is purely a mathematical device and can have no effect on the actual 
correlations of peaks of F.. 

Our procedure is as follows. Pick a convenient (e.g. Gaussian) filter to define Fb. Pretend Fp is 
an independent random field, so that the power spectrum of Fp is the difference of the power spectrum 
of F. and that of Fb, ignoring the correlations between Fp and Fe. Calculate the local density of peaks 
npk as a function of Fb, using the number density formula of $4 with a local threshold in Fp biased 
by Fe to keep the threshold in Fe at the desired global value. Integrate over the F*(c) weighted by 
the joint probability distribution for the Fb(<) to find the n-point correlation function of npk. 

The advantage of the peak-background split is that npk can be rather accurately approximated 
by equation (5.6), 

n,k(Fb) = no ezP[aFb/w - ;fl(Fb/a)‘], (6.4) 

with a and p chosen to fit the first and second derivatives of n,k(Fb) at Fb = 0. The form of equation 
(6.4) allows the integral for the n-point correlation function of npk to be done analytically. 
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As discussed in mere detail below, we find good agreement between the direct calculation of 
the two-point peak correlations and the calculation using the peak-background split provided that: 

(1) R&/R. is large enough (> 3) so that the local statistical properties of Fp are nearly the same as 
those of F.. The power spectrum moments (rl and (TV are then nearly equal for Fp and F., though 
oe may differ substantially, since o0 has important contributions from fairly long wavelengths if n is 
close to -3. 

(2) r/Rb is large enough (> 4) so that the two-point density correlation functions (b(r) and E.(r) are 
nearly the same. 

The peak-background approach gives reliable results for the peak correlation function only for 
r/R. > 12; so, the direct calculation of the correlations will be preferred when it is feasible. We 
will use the peak-background approach to obtain results for 3-point correlations and to discuss the 
effects of dynamical evolution of the density perturbation field on the correlations. Much of the 
present amplitude of the galaxy-galaxy correlation function must be due to a non-zero amplitude of 
the density fluctuations, rather than the zeroth-order statistical correlations by themselves. 

The following discussion will focus on how to apply our formal results for the n-point COI‘- 
relations, and in particular for the tw-point and three-point correlations. Technical details of the 
derivation are given in Appendix 6. 

Please note that all WI‘ approximations in this Section are predicated on the density pertur- 
bation spectrum having a substantial amount of power on large scales. The power spectrum should 
have an index n < -1. In particular, if n = 0 the mass correlation amplitude (1, falls off exponentially 
(when Gaussian-filtered), and the neglect of derivatives of 11, compared with 11, is not valid even at 
large separations. If n 2 0, the correlations are dominated by fluctuations on scales considerably 
smaller than the separation of the points, so the rationale for the peak-background method is totally 
destroyed. 

6.2 DIRECT CALCULATION OF CORRELATIONS 

Consider the n-point correlation function of peaks satisfying some sort of threshold criterion. 
The n-point correlation function is defined such that 

1+ t;;‘(& -,r;l) = (n,k(~~)...npk(r;l))/(npk)n (65) 

is the joint probability that a peak is in a volume dV< about each <, divided by the nth power of 
the global average peak density times the product of the d’Vi. The joint probability distribution of n 
peaks depends upon 10 variables F, fj, <A at each point, with the same weighting factors at each point 
(det (5)) as in the peak number density calculation of 54. Proper choice of variables (see Appendix 
1) simplifies the correlations at a single point, so that only the correlation between Y = F/Q and 
z = -V*F/ue is non-sew However, CI‘OSS correlations between most of the variables at diflerent 
points are nonsero. 

Our approach is based on work in progress by Bardeen, Bond, Jensen and Szalay (1985). 
Cross-correlations involving any derivatives of F at either point are proportional to derivatives of 
the density correlation function E(rij). The derivatives of c fall off substantially more rapidly with 
increasing separation ‘ij than [ itself, particularly when [ falls off slowly, as it does on galactic scales 
in cold dark matter scenarios. By the time rij is more than 4 times the smoothing length R. which 
defines the peaks, the cross-correlations proportional to derivatives of E are small enough that it is a 
reasonable approximation to set them to xero and just retain cross-correlations between F(i) and F(j). 
This simplifies the correlation matrix enough to get an explicit expression for the joint probability 
distribution in the v(i) and z(i), after integrating wer all other variables. 

To describe the result, we use a matrix notation. Let 5 and z be n-component column vectors, 
with components 

i?(i) = (v(i) - qz(i))/(l - 7’) (6.6) 
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and z(i), respectively. Define an n x n matrix Q with off-diagonal elements the normalized density 
cross-correlations $;j given by equation (6.2) and with zero diagonal elements. Also, we define a 
related matrix 

c 3 %J (I+ Q/(1 -g))-‘, (6.7) 

with I the unit matrix. The expectation value of the product of local peak densities which appears 
in equation (6.5) can then be written 

&,k(r;)..+$n)) = (47r*R3-” (det (I+ ‘$/(I - ‘$)) )-I/’ 

x (v /du(i)~m dz(i) t(v(i)/v*) g(z(i),r,yy(i)) e-‘(i)a’2 
> 

ezp(ictCfi). 

w-5) 
Here, g is the integrand of the integral over z (equation A1.19) in the function G(v,~Y) which appears 
in the number density formula (equation 4.3): 

In general, since the matrix C is intrinsically non-diagonal and since the vector fi depends on both 
the v(I’) and the z(i), the integrals in equation (6.8) do not factor into independent terms. The 
2n-dimensional integral makes the evaluation of even the 2-point correlations difficult unless further 
approxnnations are made. 

One regime in which the integral does simplify is the limit in which all the tiii satisfy the 
condition 

V,‘+ij < 1, (6.10) 

for then 
ezp(;;ki2) EJ 1+ ‘GtcG 

2 (6.11) 

so the integrals over z and v can now be done separately at each point. Let (5) be the average of c 
over all the peaks selected by the threshold criterion. The n-point function becomes 

(6.12) 

This is the limit discussed by Kaiser (1984a) in regard to the statistical enhancement of clustering of 
Abel1 clusters. Compared to the two-point mass density correlation function c,(rij), the two-point 
density correlation function is enhanced by a factor (P)*/u~. 

To facilitate numerical evaluation of (fi) we have found an approximate formula for the average 
value of z at fixed V: 

(4 = v + q-7,-v), (6.13) 

B = (3(1 - 7’) + (1.216 - 0.97’) ezp (-$7(7V/2)‘)) 
((3(1 - 72) + 0.45 + (7V/2)~)lP + V/2) 

(6.14) 

The value of R is accurate to better than 1% over the range of values of 7 and 7~ relevant for galaxies, 
0.4 < 7 < 0.7 and 1 < yv < 3. Further, it has the correct asymptotic behavior as 7~ + co. In the 
high Y limit, 8 + 0 and (z) -+ 7~. Using equation (6.13), (i?) at fixed v becomes 

(iq = Y - 70/(1- 72). (6.15) 

Typically, we have 7 = 0.6, Y M 3, so 6’ FJ 1 and (6) is significantly less than Y. 
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We have tried more than one approach to simplifying equation (6.8) in the nonKnew regime, all 
based on approximating the integrand to allow analytic evaluation of the integrals over z(i) in terms 
of accurate interpolation formulas, leaving only the integrals over the v(i) to be done numerically. See 
Appendix 6 for a discussion of some of the alternatives. What we present here is an approach which 
seems to offer the best combination of accuracy and esse of use. 

Consider approximating the function g (equation 6.9) by a Gaussian in z, 

!?(z,7,7v) - s+m,7,74 ezP(-~Bp(zm)(z - .?x). 

We evaluated the function g numerically for each of several pairs of values of 7 and 7~ at three evenly 
spaced values of z centered close to the maximum of g, with g at the smaller and larger values about 
2/3 of the maximum. The Gaussian fit to these values determines z, and fig at each 7, 7~. We found 
interpolation formulas for zm(qr7v) and fl,(7,7u) which give a good fit over the range of valuas of 
7 relevant to reasonable density perturbation spectra (0.4 - 0.7) and over the range of 7~ where the 
integrand in equation (6.8) is large. Some care was needed because g(z) is not particularly close to a 
Gaussian for z substantially different from 2,. The result of all this is 

z, = 7v + (3(1 - 72) + (1.1 - 0.97’) =P C-7(1 - r2)(7~/v)) 
((3(1 - 7’) + 0.45 + (7~/2)*)‘/’ + V/2) ’ 

(6.17) 

/%(4 = j$ + &+3) 
(z& - 3)+; + 164 ezp(-$I+,)) ’ 

(6.18) 

The value of g(z,,,) can be calculated directly through equation (6.9) with f(z,) approximated by 

f(z,,,) FY z&f,, - 3) + (2.412; + 1.73) ezp(-%? ). 
8’” (6.19) 

The interpolation formulas are based on large z asymptotic expansions since z, is grreater than 2 
even for 7~ < 1; over this range, they are accurate to better than 1%. 

Note that though the interpolation formula for z ,,, is similar to that for (z), it is not identical. 
The difference reflects the non-Gaussian nature of the true g(z). A modification which improves the 
accuracy of the final results for the correlations significantly is to replace z, in equations (6.18) and 
(6.19) by (z), so in equation (6.8) 

(6.20) 

In particular, this guarantees accuracy when the correlation amplitude is small and equation (6.12) 
applies. 

Since the integrals over the z(i) in equation (6.8) are now integrals over the exponential of a 
quadratic form, they can be evaluated analytically using standard techniques (see Appendix 6). Let 
5 be the column vector with components 

i*(i) = (44 - 7(4)/(1- 77, (6.21) 

and let p be the n x n matrix with the i th 
elements zero. Equation (6.8) reduces to 

diagonal element equal to @,((z(i))) and all off-diagonal 

(finpk(<)) = (4naRf)-” (n /Wi) t(u(i)/vt) g((z(i)),7,7v(i)) =p(-y(i)‘/2)) 
i i 

x ezp +t qa _ c72/(1 _ 7y-1 fi;) (2x)‘+(det (a - c7’/(1- 7’)‘) )-l’*. 

(6.22) 
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Numerical evaluation is very manageable for n = 2 and feasible for at least n = 3. 

For consistency, the global average number density of peaks (n#) should be calculated using 
the same approximation for g(z) that was used to arrive at equation (6.22), 

bgk) = @~‘R:)-’ / dv (A) “* +/~t) g(@)) e~~(-~*/2), 

SO numerical errors in the absolute densities have a minimal effect on t$’ 
(6.5). 

as found from equation 

6.3 PEAKS ON A FLUCTUATING BACKGROUND 

A heuristic approach to understanding why the peak correlations are enhanced relative to the 
density perturbations is to consider the local density of peaks as a function of the mass overdensity 
averaged on a scale somewhat larger than than the mean separation of peaks. The local peak density 
increases rapidly with an increase in the background mass overdensity since the effective threshold is 
reduced. In this approach the peak correlations are an amplified reflection of the background density 
correlations. The local peak density is treated as a continuum process rather than the point process 
of $4 and 5. 

To make this approach explicit and quantitative, write the full (smoothed) density field F, as 
the sum of a peak field FP and a background field Pb. The latter is defined by smoothing the full 
density field F on a scale Rb (we drop the subscript f in this section) larger than the scale R. used 
to define the peaks in F.. The smoothing can be thought of as a convolution integral as in $4, 

i%(f) = /cb(l?- ?‘l)F(?‘) d’r”, 

or as a low pass filter C*(k) acting on the Fourier transform of F just BS for F. itself. In some sense 
the peak field FP should describe the local properties of the peaks in F., whose long range clustering 
properties are defined by the information in Fb. In thii spirit, if n,k(Fb) is the local density of peaks 
in FP, we want to compute the n-point correlations from an expression of the form 

(npk(Fl)-%k(s~)) = /nnpk(ys(i)) dvb(i) ~(y(l),...,~~(,)), 
I 

with 
Yb = Fb/Ob, ~7; = (Fj). (6.26) 

Since Fb is a Gaussian field in its own right, its probability distribution for the values ub(i) in a range 
dvb(i) about I+(i) at n-pOintS is, in matrix notation, 

P(vb(i), . . ..vb(i)) = (2r)-““[det (I+ lk.)]-‘1” ezp[-;“!(I+ Q)-~Q]. (6.27) 

The matrix q is the same normalized two-point density correlation matrix for the field as was intr+ 
duced in 56.2 for F,, with off-diagonal elements 

Qij = (pb(rij)/Uf = (vb(i)vb(j)). (6.28) 

In $5 we discussed how to calculate directly the probability per unit volume of a peak in F, 
subject to the constraint that the field smoothed on a larger scale has a particular value Fb. It 
might seem reasonable to use this as an estimate of the local peak density npk(Yb) in equation (6.25). 
However, the results for the correlation functions would depend on the choice of the smoothing function 
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Cb and would not agree with the correlations calculated directly, even at separations large compared 
with Rb. ks we saw in 55, the problem is that the peak field defined as 

FP = F, - Fb (6.29) 

is correlated with Fb, (F,Fb) # 0. The background is not statistically neutral (except for altering the 
effective local threshold), as it should be to use equation (6.25). Only if the background is defined by 
a perfectly sharp low pass filter in k-space, Cb(k) = o(kb - k), is (FPFb) = 0, but then the background 
two-point function cPb oscillates strongly with separation r until r is very much larger than Rb - k;‘. 

Our way around these problems is to define FP as a Gaussian random field statistically inde- 
pendent of and uncorrelated with Fb. The field FP is characterized by its power spectrum, which 
is equal to the difference of the power spectrum P,(k) of F. 
Furthermore, we choose a Gaussian smoothing for Fb, with 

and the power spectrum 4(k) of Fb. 

cb(r) = (2%)-3/2R;3 ezp(-+t), 

to eliminate the ringing of the mass correlation function &,b. If P(k) is the power spectrum of the 
unsmoothed density perturbation field F, 

S(k) = ezp(-k*R;) P(k), (6.31) 

P,(k) = [ezp(-k’R:) - ezp(-k’R:)] P(k). (6.32) 

With this definition of FP, the field F: = FP + Fb has th e 
therefore has all of the statistical properties of F,. 

same power spectrum as F. and 
Nevertheless, if Fb is calculated from F. by an 

explicit convolution integral, FP cannot be, and members of the ensemble {F:} cannot be identified 
with members of the ensemble {F.}. 

The global threshold is applied to F:, but the local density of peaks n,*(~b) is given by the 
number density formula of equations (4.3)-(4.13) applied to FP. Let 

(6.33) 

d, = (F:) = ((Fi)‘)s nip = (F;), 
gf, = @'Fe)*) = c:. - utb, nip = ((V'F.)') = (1;. -CT;,, 

7P = 4pl(QopQp), R., = &lp/~zp. 

The differential number density &(v,; qP, R.P), with 

up = Fp/n~Opr (6.34) 

for peaks in FP has the same form as equation (4.3). As a f unction 
above threshold is 

of pb the local density of peaks 

“pk (Vb) = /- 0 dvP th%/~Os + ~b~Ob/%)/Vt] &&). (6.35) 

What makes the peak-background calculation worthwhile in competition with the direct calcu- 
lation of the correlations discussed in $6.2 is that equation (6.35) can be approximated accurately in 
a way which allows the integral in equation (6.25) to be done analytically. The form is (c.f. equation 
5.6) 

n&l+) = “0 C?zp(Wb - ;#). (6.36) 
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The parameters no and o! are found from the Taylor series expansion of equation (6.35) at yb = 0. 
Note that at V* = 0 there is an effective threshold parameter 

4 = wo*l~op. (6.37) 

The integral for no is 

J - no = 
0 

dv +b:) &&7p,R.p), (6.38) 

and can easily be evaluated numerically using the interpolation formula, equation (4.4), for the dif- 
ferential number density. If t(l) 
then 

IS the first derivative of of t(v/v:) with respect to its argument, 

a = (“Ov;)-+Ob/(uOp) l- dv t(l) ,‘d,k(V), (6.39) 

While @ could also be evaluated from the Taylor series, it is in practice better to determine p by for&g 
equation (6.36) to agree with a numerical evaluation of npk(pb) from equation (6.35) at vb = 2, say. 

The first use of equation (6.36) is to calculate the global average of the local number den&y. 
The spatial average is equal to the integral over the Gaussian probability distribution, 

bpk) = nO(274-1’2~~ da =P[‘Wb - ;(I+ a)$] 

(6.40) 

An important consistency check on the peak-background split is to compare this (n,k) with the global 
number density from F.. We find good agreement to within a few percent once Rb > 3R. even though 
no may be several times less than (n#). Also, Rb > 3R. ensures that the local properties of the 
peaks, as measured by the moments 01 and 02, are nearly the same for Fp and F.. 

Analytic evaluation of the integral in equation (6.25), using techniques similar to those of $6.2 
and Appendix 6, gives 

(fin&i,)) = n,“(det (I+‘Z’) det (pI+(I+Q)-‘))-“’ 
i 

e=~(~a~~([~l+(~+~)-‘]-‘)~~), (6.41) 
ij 

Use equations (6.40) and (6.41) together to find 

(a) 
l + &pb (6, -,r;) = (npk(~~)...n,k(~~))/(n~k)~. (6.42) 

If B < 1, which holds in the limit Rb B R., SO cOb/uOp << 1, 

fpb fl ezP[a’ c $'ij] - 1. 
i<j 

(6.43) 

Equation (6.43) has the same form as the expression for the n-point correlation function derived by 
Politzer and Wise (1984) in the high threshold limit. However, for realistic thresholds, by the time 
equation (6.43) is valid the argument of the exponential is small compared with one and the n-point 
correlation function is just a sum over two-point correlations. 

Of course, equations (6.40)-(6.42) can only be expected to give an accurate approximation to 
the real tpk if the minimum separation Tij of the points is large enough compared with Rb that the 
background mass correlation &,b is close to &. A numerical comparison of the twepoint &,p, and c,,* 
is given in 56.4. For parameters appropriate to galaxy correlations a ratio Vij/Rb greater than 4 seems 
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to be sufficient for an accuracy of a few per cent, which implies a ratio rij/R. greater than about 12. 
Asymptotically at large rij, where $ij < 1, comparison of equations (6.40) - (6.42) and (6.12) shows 
that the two estimates of &pk are the same if 

(‘? = &‘O./~Ob) (1 + a)-‘. (6.44) 

6.4 TWO-POINT STATISTICAL CORRELATIONS 

To illustrate the application of the formalisms discussed in $6.2 and 6.3 we present numerical 
results for two-point correlations here and for three-point correlations in 56.5. Our calculations are 
designed for comparison with the data on the two-point galaxy-galaxy correlations from the CfA 
redshift survey ss analyzed by Davis and Peebles (1983). The theoretical background is the cold 
dark matter class of cosmological models together with the origin of density perturbations during an 
inflationary epoch in the very early universe (Starobinski 1982, Guth and Pi 1982, Hawking 1982, 
Bardeen etal. 1983). We expand upon the discussion of these models in $4.2. 

The cold dark matter cosmological scenario is the one most likely to be compatible with an 
assumption that galaxies form at peaks of the primordial density perturbation field. If the density 
perturbations are generated from quantum fluctuations in the Higgs scalar field which gives rise to 
an inflationary epoch, the primordial fluctuations should have a scale invariant Zeldovich spectrum, 

P(k) cx k-S, when expressed in terms of a hypersurfaceindependent measure of the metric fluctu- 
ations. The evolution of these perturbations through the epoch when the universe becomes matter 
dominated results in a well-defined power spectrum of density perturbations just prior to galaxy for- 
mation, the ‘adiabatic’ power spectrum, so named because initially there is no perturbation in the 
ratio of cold dark matter density to entropy density. This CDM adiabatic spectrum was first obtained 
by Peebles (1982). More refined calculations have been carried out by Blumenthal and Prima& (1984), 
Bardeen (unpublished) and Bond and Efstathiou (1984), and an accurate fit is given in Appendix 7. 

Another conceivable, though less strongly motivated, type of density perturbation spectrum to 
come out of inflation with cold dark matter is associated with quantum fluctuations in an axion field 
(Steinhardt and Turner 1983, Linde 1984). When these fluctuations become perturbations in the cold 
dark matter energy density at the chiral phase transition (7’ N 200 MeV) the total energy density 
necessarily remains unperturbed, since the wavelengths are much larger than the horizon at that time. 
The evolved density perturbation spectrum just before galaxy formation is called the isocurvature 
spectrum since there is no initial perturbation in the spatial curvature - unlike the adiabatic case. 
Bardeen (unpublished) and Efstathiou and Bond (1985) have computed the form of this spectrum. 
Accurate fits are given in Appendix 7. 

The isocurvature and adiabatic spectra become identical at long wavelengths. On shorter 
wavelengths, the isocurvature is generally Ratter than the adiabatic, with more power on cluster 
scales, and with effective index n RI -2.5 on galactic scales compared with n EJ -2 for the adiabatic. 
We shall see that these shape differences have a relatively important impact on the correlations we 
compute for the two models. 

The precise scaling of these density perturbation spectra in relation to present observations 
depends on the value of the Hubble constant, since this determines the scale which comes inside the 
horizon just as the universe becomes matter dominated. If we assume that the present value of the 
cosmological constant model is zero and the cosmological density parameter D = 1, constraints on the 
age of the universe from globular cluster evolution strongly suggest that the Hubble parameter h is 
no larger than 0.4 or perhaps at most 0.5. 

The remaining parameters for our model of galaxy formation are the smoothing radius R. for 
the peaks and the parameter (I in the threshold function t(~/nt) which governs the sharpness of the 
threshold. Our best guess is that R. should correspond to a mass somewhat smaller than the total 
mass (including the dark halo) of a typical luminous galaxy, since some of this mass would no doubt 
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have accreted onto a central core after the epoch at which the threshold was set. The mass within 
the Gaussian smoothing window is given by equation (5.3~~). 

The choice of Q is also uncertain. However, in the context of a threshold hypothesis, a reasonable 
requirement on p is that the distribution in v of peaks selected BS ‘galaxies’ be not too asymmetric 
about its maximum and the maximum be reasonanbly close to Q. This requires a large Q when vt is 
large and a smaller p when pt is not so large. 

With the above as background, we first examine the asymptotic amplitude of the correlations 
in the limit c,,pk < 1 when equation (6.12) is a good approximation to &pl;. The quantity (fi) can be 
considered an effective threshold level for the correlations, since .&,b = (~)2&,/u~, and (fi) approaches 
vt for a perfectly sharp very high threshold. The integral 

(4 = lrn du (v - re/(l- r2)) t(~Ie) J,,(y) (6.45) 

is easily evaluated, and some illustrative results are shown in Table 6.1. 

The masses associated with the values of R. in Table 6.1 range from M. = I.3 x lOlo h-’ MO 
for R. = 0.143 to M. = 3.9 x 10” h-’ Ma for R. = 0.445. Th e smaller pair of values of R. and the 
larger pair of values of R. each represent a single smoothing radius when the perturbation spectrum 
is resealed to make it independent of h. For the two smaller values of R., 7 = 0.555 for the adiabatic 
spectrum and 7 = 0.437 for the isocurvature spectrum. For the two larger values of Re, 7 = 0.599 for 
the adiabatic spectrum and 7 = 0.500 for the isocurvature spectrum. 

The value of V* for each h, Re, and 4 is chosen so that the global average number density of 
of peaks above threshold is (nPk) = 0.01 h’Mpc@, the number density of the galaxies counted in 
the CfA redshift survey (Davis and Huchra 1982). Note that as the threshold becomes less sharp (q 
decreases), there are more peaks with Y < vt counted as ‘galaxies’ and vt must increase to keep the 
total number density constant. On the other hand, (fi) decreases because the average height of the 
peaks decreases. The distribution of peaks in Y is reasonably symmetric about vt for Q = 16 when 
I.Q c* 3.5 and for 4 = 8 when vt SZI 2.5 - 3.0 (see Figure 4.4). By the time vt < 2 the differential number 
density is no longer rapidly varying and (I = 4 is probably as sharp a threshold as can be expected. 

The last column in Table 6.1 gives values of the asymptotic expression for the zeroth-order 
twepoint correlation function evaluated at r = 5 h-‘Mpc, where the observed correlation amplitude 
is one. The actual peak correlation amplitude is significantly larger unless (LJ)~&,/u~ K 1. These 
values give some idea of the trend of the overall amplitude of the peak correlations with h, R., and Q. 
As R, decreases, (fi) increases because it must increase to keep the global number density constant. 
LT,, is also increasing at just about the same rate. In fact, the trend with R. is opposite for h = 0.4 and 
h = 0.5. The correlation amplitude can be rather sensitive to h since at fixed observed separation (in 
units of h-‘Mpc), &/ui decreases rapidly with increasing h. This is largely balanced by an increase 
in (fi) at the larger R., but not at the smaller R.. 

In contrast, oo rises more slowly as R. decreases for the isocurvature spectrum. Also, once 
vt < 2.5, (6) changes more rapidly with R,. Both effects combine to make the correlation amplitude 
rather sensitive to the value of R. for the isocurvature spectrum. Of course, for a given choice of (n& 
there is a maximum possible value for R. at which it --t --co. 

For each type of spectrum, we pick two cases shown in Table 6.1 to show how the actual fPpL 
varies with r = I?2 - ?‘I/. First consider the adiabatic spectrum. One case has a small value of R. 
(0.178 h-‘Mpc with h = 0.4) and a reasonable threshold sharpness (q = 16) for the fairly high value 
of IQ. The second ease has a larger R. = 0.356 h-‘Mpc with h = 0.5 and a correspondingly softer 
threshold (q = 8) for the smaller value of vt. 

The direct calculation of the correlations from equation (6.22) is straightforward. The matrix 
C has components Cl1 = Czz = -$:,/(I - 72), C 11 = C& = $11. The double integral over ~(1) 



and v(2) is evaluated numerically. The results for the adiabatic spectrum are plotted as the solid 
curves in Figure 6.1~ The approximations made in arriving at equation (6.22) are estimated to have 
errors of a few per cent at r = 4.5R., which rapidly diminish to less than 1% aa r increases. To 
show how the statistical enhancement modifies the slope of the peak correlation function from that of 
the mass correlation function we plot (C)‘&,/u: for R, = 0.178 h-‘Mpc. Note how this asymptotic 
approximation approaches &,k once [pk < 1. 

In Figure 6.la, it is remarkable how closely &,k follows an r-1.s power law, like that of the 
observed galaxy correlation function, even though the maas correlation function fp is not particularly 
close to a single power law. That this is so over the whole range of R. likely to be relevant for 
galaxies is an accident of the particular shape of the adiabatic density perturbation spectrum and of 
the observed number density of luminous galaxies. If galaxies were rarer objects so that, for a given 
R., vt were larger, then the nonlinear statistical enhancement of the correlations when &,k > 1 would 
be greater, and &pk would rise more steeply at small r - as was predicted by Politzer and Wise (1984) 
from an approximation to fpk valid only in the very high pt limit. If luminous galaxies were more 
common, ut and (6) would be smaller and f,,k would follow fp in shape more closely at small r as well 
a.9 at large r. 

The amplitude of fpk is 3 to 5 times smaller than the observed correlations, indicated by the 
(S/r)l.* line. However, remember that the <pk plotted here is the correlation function of the peaks 
in the lumt that fp < fpk, before any significant dynamical evolution of the correlation function. At 
the present time, fp cannot be very much less than one on scales of several Mpc, since a significant 
fraction of the universe has collapsed on these scales to form bound clusters of galaxies. Also, c,, must 
be large enough so that galaxies formed at a reasonably early time. 

To follow the dynamical evolution of &pk when it and f+, exceed one is a job for numerical 
simulations. Davis etd (1985) give some results of a pioneering attempt to follow the clustering 
of galaxies identified with high Y peaks in a cold dark matter dominated universe. The twc-point 
correlation function & of their ‘galaxies’ increase in amplitude without steepening on comoving scales 
of 2 Mpc < r < 10 Mpc (see Figure 17 of their paper), suggesting that dynamical evolution of a 
zeroth-order fpk like that shown in Figure 6.1 may be consistent with observation. The numerical 
simulation does show steepening on smaller scales once dynamical clustering becomes highly nonlinear; 
this is not seen in the observed correlations. However, the accuracy of these numerical simulations 
on such small scales is open to question. Much more work is needed. We will explore the dynamical 
evolution of the perturbations when both fp and &,k are less than one in 56.6. 

One important further point in Figure 6.la is the comparison of the &,pk(r) calculated directly 
with &b(r), which is the zeroth-order peak correlation function calculated using the peak-background 
split of 56.3. Equations (6.41) and (6.40) combine to give 

1+ fpb = (1 - (j3ti11/(1 + P))‘]--“2 ezp[(al(l+ PV~lZl0 + B!w(~ + mL (6.46) 

where $12 is the normalized two-point correlation function for the background field Fb as defined by 
equation (6.28). 

For the case plotted, the background smoothing radius is Rb = 0.593 h-‘Mpc, 3.33 times R,. 
The values 

Q = 2.169, fl= 0.426 (6.47) 

(equation 6.36) and no = 0.00224 h3Mpc-’ follow. The effective threshold (equation 6.37) is at 
V: = 4.249, and the parameter 7p for the peak field is 0.6534. The global number density from 
equation (6.40) is (npk) = 0.00976 h3Mpcm3 compared with 0.01009 calculated directly. The peak- 
background estimate of (fi) is 2.64 compared with 2.62 in Table 6.1. The agreement of &,a with f,,k 
is excellent once r > 2 Mpc ES 3.4Rb. This gives us confidence in the peak-background method, which 
we will use exclusively in $6.5 and $6.6. 
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Now consider the results for the isocurvature spectrum, as shown in Figure 6.lb. The two exam- 
ples from Table 6.1 are h = 0.4, R. = 0.178 h-‘Mpc, q = 8 and h = 0.4, R, = 0.445 h-‘Mpc, q = 4. 
Taking 7 = 8 rather than 16 in the first example means that the average value of v is somewhat 
smaller than vt. It appears that f,k agrees very well with the observed galaxy-galaxy correlations at 
r z (4 - 5) h-‘Mpc, but remember that &,p* is the unevolved peak correlation function. If (re is large 
enough for galaxies to form at a reasonable redshift, the peak-peak correlations at the present time 
will have grown to be considerably larger than the observed galaxy correlations (see 56.6). 

There are still problems if we try to minimize f,r; at 5 h-IMpc, as in the second example. 
While the level of &,k now does allow for some dynamical evolution, the level of ee is still constrained 
to be too small to allow galaxies to form at a reasonable time. Also, (C) is so small that the statistical 
segregation of galaxies from mass in clusters and superclusters ($5) is too weak to be of much help 
with the missing mass problem. We conclude that a pure isocurvature density perturbation spectrum 
is incompatible with at least our simple version of a threshold hypothesis for galaxy formation. 

From these preliminary explorations it seems promising that the threshold hypothesis together 
with the adiabatic density perturbation spectrum can give a good account of the observed correlations 
of galaxies (see also $6.5). The same formalism can be applied to applied to correlations of other rare 
objects such as rich clusters of galaxies (Kaiser 1984a). However, the adiabatic spectrum seems in 
some difficulty here, since, according to Bahcall and Soneira (1983), f.1 for the Abel1 cluster sample 
remains positive out to 100 h-‘Mpc, while fP goes negative at r EJ 20 (nh’)-’ Mpc for the adiabatic 
spectrum. While our approximation schemes break down as f,, changes sign, it seems highly unlikely 
that the peak correlations will behave very differently from the density correlations. 

6.5 THREE-POINT CORRELATIONS 

The three-point correlation function for galaxies has been infered from angular correlation mea- 
surements (Groth and Peebles 1977) and has been directly estimated from redshift surveys (Efstathiou 
and Jedresejewski 1985). The usual way of decomposing the three-point function is to write it as a 
sum of the twc-point correlations fia, fzs, fis at each of the three separations rir, rrs, ris, plus a 
connected part denoted by <ias = <(?I, Fe, ?s): 

f’s’(r;,~2,fi) = f12+ts+ fl.9 +1123. (6.48) 

The observational results are consistent with $irs being a surn over products of two-point functions 
with a coefficient Q which is at least approximately scale independent, 

Cl23 = Q(f1af22 + f2sfsl+ f3lflZ). (6.49) 

The value of Q is estimated to be close to one, with an uncertainty of about 0.2 either way. 

The three-point function is also an important diagnostic for numerical simulations of clustering 
of galaxies. Davis &al (1985) find in their cold dark matter simulations that Q is usually in the range 
1.5 - 2, at least for smaller separations, when they force the three-point correlations into the form of 
equations (6.48) and (6.49). When they introduce biasing like that assumed in this paper they obtain 
a value of Q somewhat closer to one. 

Politzer and Wise (1984) found that the connected part of the three-point function for points 
above a high threshold has the form 

Cl23 = f12f23 + f2Sf.31i- falfl%+ f12f2Sf31. (6.50) 

The last term dominates when fij > 1. 

A direct calculation of the three-point function using equation (6.22) requires evaluating a triple 
integral over the v(i). This is certainly feasible, but the analytic calculation using the peak-background 
split is much simpler and is all we present in this paper. 
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Reduction of the matrices in equation (6.41) is beginning to get a bit complicated for three-point 
correlations, but it is still straightforward. Let 

D= (det (I+‘@) det (PI+ (I+ *)-I) )-” (l-b@)-’ 

= 1 - (l,g, + +l’s + &) (P/(1 + PV + W12$23thl (P/(1 + P))“. 
(6.51) 

Then 
I + fpb(Fl,?2,G) = I+ f$) = D-l’* ex, 

x= n(I;a,2(+l* + ~2.3++'31- &Ml +& +G (6.52) 
2 

+(Ir12+23 + llr23$%1+ 111x&2) + (1$)2 W~~&XI). 

Some simplification is possible if the three points ?I, 6, ?” are at the corners of an equilateral triangle, 
so r12 = ~2s = rs1 = r and +I2 = $2~ = t+& = 11. We find 

1 + f$) = [l- p$/(l+p)]-l [1+ ?A9$/(1 +P)l-“’ .zP(f~&;(fy;))’ (6.53) 

which is rather similar to equation (6.47) for f$‘. 

Consider the limit when both fl$ij and (o/[l+@)* +ij are small compared with one. Expanding 
the exponential and D in equation (6.52) t o second order in $J and then reassembling terms to replace 
the expansion in tl, by an expansion in f$’ (see equation 6.47) gives for the connected part of the 
three-point function 

Cl28 FJ (1 - P(l+ P)la2) (f12f22 + fzsfs1 + fSlfl2). (6.54) 

Aa expected, this has the form of equation (6.49). The asymptotic value of Q at large separations is 
then 

Q e 1 - a(1 + a)/&‘. (6.55) 

While both a and fl depend on the ad hoc choice of the background smoothing radius I&, the scaling 
of a and ~9 with Rb is such that Q is independent of &, at least when Rb/R. is large, as it should be. 

If @$ij < 1, but (a/(1 + p))’ $ij is not small, which requires (a/(1 + j3))’ > 1, 

f@) IJ ezP((q(l+ 0))’ (!h2 + Q2s + h,) 

FJ (1+ f12)(1f fzs)(l+ fs1) - 1. 

(6.56) 

This is equivalent to the Politser-Wise form, equation (6.50), and is incompatible with the form of 
equation (6.49) once the correlations are large. 

What is the situation for peaks selected to model the distribution of galaxies? In order that the 
peak-background split apply when the correlation amplitudes are at least beginning to get large, R. 
should be relatively small. Consider the case shown in Figure 6.18 (adiabatic spectrum), with a and 
,i3 given by equation (6.47). Th en a”/@(1 + p)) = 7.74 and the asymptotic Q = 0.871. At smaller 
‘ij define an effective Q, Qe, which is calculated by taking f @) from equation (6.52), subtracting the 
sum of the twwpoint correlations f12, &, &+1 from equation (6.46), and then dividing by the sum of 

the pair-wise products of the [ij. When rla = r2s = 731 = 2 h -‘Mpc, the smallest separation at 
which the peak-background split seems to be reliable, we find f(‘) = 12.33, f(2) = 1.638, ~12~ = 7.42, 
and Q. = 0.922. The Politzer-Wise form would give f @) = 17.35, almost 50% too large. Repeating 
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this calculation for s variety of different rij, including all kinds of triangle shapes, always gives values 
of Q. in the range 0.87 - 0.92. The moral is that ss the correlation amplitude becomes large, what 
is s fairly small percentage error in the exponent in equation (6.52) can be a substantial error in the 
correlation. 

The fact that Q. for the peaks is approximately scale independent and has a value agreeing 
remarkably well with the observed Q for galaxies is encouraging, but should not be taken too seriously. 
The problem again is that what we have calculated for the peaks is zeroth-order in dynamics, while 
the galaxy three-point function is only measured on scales (< 2 h-‘Mpc) on which there has been 
significant dynamical evolution. Since the evidence from the numerical simulations is that dynamical 
evolution drives Q toward one, at least one can say that our threshold hypothesis seems to be consistent 
with observations of three-point correlations of galaxies. 

6.6 DYNAMIC EVOLUTION OF THE CORRELATIONS 

The precise calculation of the dynamic evolution of the correlations is rather complicated since 
the correlations are defined in terms of physical distances in our present universe whereas the proba- 
bility distribution for the random field F. and quantities associated with it are known in terms of the 
linear perturbation field as s function of Lagrsngisn (comoving) coordinates. At the outset one ce,n 
restrict oneself to considering dynamics as a linear perturbation sway from the homogeneous isotropic 
background, leaving the nonlinear problem to numerical simulations. However, the statistical effects 
are highly nonlinear in general, and the statistical and dynamical contributions do not couple in s 
simple way. 

We leave the general problem to future work, and consider here only the much simpler limit when 
the separations of the points ere very large compared with R. and the statistical correlation amplitudes 
ss well as the dynamical perturbations sre small. In this limit, the n-point correlation function is just 
B surn over two-point functions, so we need only consider the two-point correlations. There is &J 
plenty of rocun to apply the peak-background method, which is conceptually and msthemr&,~ly 
relatively simple. 

In the peak-background split of 56.3, there is s comoving density of peaks, Rpkr which depends 
only on the background overdensity vb(T; t) evaluated at t = 0. Here r’is the comoving position and t is 
the time. While to lowest order in the dynamics Vb is independent of time, the fractional perturbation 
in the physical density at time t # 0 should be written ss 

Fb(< t, = vb(l;t)ub(t), (6.57) 

since the correlations are second order in the density perturbation amplitude. 

The number of peaks per unit physical volume is then 

ffpk = n,k(Vb(<o)) (1 + Vb(fl,t)(lb(t)). (6.58) 

The two-point correlation function can be written as 

fpbh,t) = (Npk(~l,t)Npk(Z;,t))/(NpZlr)2r (6.59) 

with zrr = lz’r - &I of fixed physical (Eulerian) separation in the present universe. The averages are 
uniform in physical volume. To evaluate them, we note that when h$ > R., equation (6.36) for npk 
reduces to 

n,k - %(l+ QYb(r;o)) (65’3) 

since (1 scales as oh/u. and fi scales ss (bb/Us)e. (To be completely careful about second order terms, 
we should have kept terms of order p and a2 here, but these obviously cancel between the numerator 
and denominator of equation (6.59).) Since 

d’z = d’r/(l + @,t)(TI,), (6.61) 
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it is easy to see that (NPk)z = (n&V = (n& as required f or consistency. (The subscripts z and r 
denote volume averages in Eulerian or Lagrangian space.) Also, by definition, 

J d3z vh(r;t) = 0, J d3r vb (< 0) = 0. (6.62) 

Write the integral in the numerator of equation (6.59), keeping only terms up to second order 
in a or q, as 

J d% n; [l + ~~(Wt)a][l+ v@,t)us] 
+ J d’rl n: au~(~~,O)[l+~~(r;,t)u~] 

+ J d’sz TL; Wb(%,O)[l + vb(r;,t)ub] 

+ J dSrl n; c&~(~~,O)v~(r;,O). 

All explicit first order terms vanish, and in explicit second order terms we can identify I+(?, t) and 
va(?,O). As in 56.3, let $12 = (v~(T;)vb(&)). Then, 

tpb(t) = (a + ~b)2’h 

= ((‘$b(o))“2 + (&(t))‘~Z)*. 
(6.63) 

The second version of equation (6.63) may well be a reasonable approximation even when the 
statistical correlations are not really small enough for the above derivation to be strictly valid. We 
have compared the time evolution predicted by equation (6.63) wib the ‘biased galaxy’ numerical 
simulation of Davis &al. (1985) and find rather good agreement. 

For a given zeroth-order correlation function, equation (6.63) can be used to estimate the 
present amplitude of density perturbations necessary for the evolved peak correlations to mat& those 
of galaxies, with &,pb w 1 at r = ro = 5 h-‘Mpc. For instance, the adiabatic spectrum predicts a 
zeroth-order &,pb of about 0.2 - 0.3 at r o, so Ep at ro should also be about 0.25. In particular, the 
model in Table 6.1 and Figure 6.la with h = 0.5, R. = 0.356 h-‘Mpc and q = 8 has ~pb(rO,O) FJ 0.18 
which requires cP(ro, to) RI 0.33. The corresponding 00~ m 2.4. This value for CT,,* in turn allows an 
estimate of the cosmological time of collapse of a typical peak. For a spherical peak at the maximum 
of the distribution in Y, the collapse redshift is zg s uo.(v)/l.69 - 1 GY 2.9. The collapse redshift 
would be somewhat larger if, as is likely, the peaks are somewhat aspherical. This value of no, was 
also used in Table 5.2 to estimate ~6 and zt E oo.~t/1.69 - 1 for this model. A similar procedure was 
followed for the other models listed in Table 5.2. 

To see the trouble with the isocurvature spectrum explicitly, consider the model in Table 6Jb 
with the smallest statistical correlation at r = ro, the model with h = 0.4, R. = 0.445 h-‘Mpc and 
Q = 4. This has (see Figure 6.lb) &b(Q,O) !a~ 0.31, and &,s(ro, to) = 1 gives &(ro, to) FY 0.20. The 
corresponding 0,~. M 0.9, which together with the threshold at vt = 1.87 implies a threshold collapse 
redshift zt EJ 0.0. The typical peak counted as a ‘galaxy’ has (v) FY 2.1, so zg M 0.1. Even in this 
extreme model, which would have relatively little biasing in the galaxy/mass ratio, ‘galaxies’ would 
form unacceptably late with a significant fraction not collapsed at present. Without any biasing at all, 
the collapse of a typical peak with Y N 1 is at a redshift I w 0.2 (with the normalization &(r~, to) = 1). 

For scales I > r,,, equation (6.63) implies that the peak correlation function is amplified over 
the mass density correlation function, &(r, 1) FJ b*&,(r,t), by the square of the spatially-uniform 
biasing factor b(t) = (C)/no.(t) + 1. A summon way to normalize the overall amplitude of the 
linear perturbation spectrum is to relate the quantity 53(r) = /,’ f(r)r*dr on scales r >> 10 to that 
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determined from galaxy redshift surveys, JQ. The assumption that galaxies are unbiased tracers of 
the rnsas distribution corresponds to J sp = Jag on sufficiently large scales, where Jsp is determined 
using the mass au+correlation function. Since the dominant contribution to Js,(r) cwnes from scales 
> ro, with biasing JJ,(~) = b-‘Js,( ) r is a good approximation. The power spectrum normalization 
with biasing is simply lowered by the factor b-* Over that determined assuming ‘light traces mass’. 
Predictions of the microwave background anisotropies AT/T are lowered by b-’ over the values 
obtained using the ‘light traces mass’ assumption (e.g., Bond and Efstathiou 1984). For the adiabatic 
CDM model with h = 0.5, R. = 0.356 h-‘Mpc and (I = 8, b = 1.7. For the isocurvature CDM 
model with h = 0.4, R. = 0.445 h-‘Mpe and Q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on 
scales r > r,-, even if it fails on much smaller scales. However, the differences between Js normalization 
and the normalization at re that we have adopted here for simplicity are not large since the correlation 
functions we predict, especially in the adiabatic model, are quite similar to the observed galaxy 
correlation function. 

7. DENSITY PROFILES AROUND PEAKS 

If promine&t cosmic structures do indeed arise from condensations of gas and dark matter 
around primordial density peaks, then the initial conditions for nonlinear collapse will be the density 
and velocity profiles in the neighborhood of the peak BS determined in the linear regime. Here, we 
focus on the density only. Similar methods would be used to determine the velocity. In 57.1, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor 
expansion of the density profile. In $7.2, we calculate the average shape and its dispersion es we 
go farther away from the maximum. In $7.3, we apply our results to clusters in neutrino-dominated 
universes. 

7.1 THE TRIAXIAL ELLIPSOID APPROXIMATION 

In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - C Xi*j/Z. (74 

The axes are oriented along the principal axes. Since all Xi are positive, the contour surface of constant 
density f, defined by F(r) = f, defines a triaxial ellipsoidal surface with semi-axes 

o’ = (W(O) - f))lll . xi ’ 

at least provided F(0) - f is small. Since Xl is by definition the largest eigenvalue, collapse will first 
Occur along the l-axis resulting in pancake formation as described by Zeldovich (1970). Depending 
upon the distribution of the other Xi, collapse may or may not follow quickly along the other two 
axes. 

We characterize the asymmetry by the parameters 

Xl - h3 
e= 2xX; 

Xl--2x,+x3 
P= 2CXi . 

(7.3) 

Thus, e (2 0) is a messure of the ellipticity of the distribution in the l-3 plane, and p determines the 
degree of oblateness (0 < p 5 e) or prolateness (0 1 p 2 -e) of the triaxial ellipsoid. Cblste spheroids 
have p = e and prolate spheroids have p = -e. As we shall see, spheroidal distributions are highly 

improbable. 
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In terms of the asymmetry parameters and the variable z = -V*F/us introduced in 56, the 
small r expansion of the profile is 

F(r) sa YQ~ - zv~g(l+ A(e,p)) as r + 0, 

A(e,p) = 3e(l- sin* 0(1 +sins$)) +p(l - 3sin* Box* 4). 

We have adopted spherical coordinates with the l-axis chosen aa the azimuthal one and zs = 
r sinBsin& Note that the angle-average of the asymmetry measure A(e,p) vanishes. The distri- 
bution of shapes in the immediate neighborhood of a peak of given height Y can be expressed in term 
of the distributions for 2, e, and p. 

The conditional probability for z given that the peak has a height Y is independent of the 
asymmetry parameters e and p: 

P.(+)dz = Np&,~)/h’&) = g$7;;l;’ = ;2;;;j-$;2 Gf~;~~;~~ 
l 

(7.5) 

Here 9 and G are defined by equations (6.9) and (4.3), 
monotonic, M zs for small z and 

and f(z) is given by equation (A1.15); it is 
N zs for large z. This probability distribution function (7.5) is 

plotted in Fig. 7.1 for a specific value of 7 appropriate to galactic scale peaks in the adiabatic CDM 
picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at z,, 
fit by equation (6.17). 

7.1.1 THE DISTRIBUTION OF ELLIPTICITY AND PROLATENESS 

Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we 
need the conditional probability for the asymmetry parameters e and p subject to the constraint that 
the peak has a given height v and z. This turns out to be independent of Y: 

P.,,(e,pjv,z)dedp= P,,(e,plz)dedp== 
3156/1 .p --~-%Z’(Sea+Pa)W(~,p)dedp 
(297)“” m (7.6) 

This result and details of the subsequent discussion are given in Appendix 3. The function W(e,p) is 
a polynomial of order five in both e and p which is constrained to vanish outside of the IpI < e, s 2 0 
domain. Indeed, the allowed domain is the interior of a triangle bounded by the points in the (s,p)- 
plane (O,O), (f, -i) and (i, 4). See Appendix 3 for details of the form of W. We plot various contour 
lines of the probability distribution (7.6) in Fig.7.2 for a variety of -yu. We have taken z = z. as the 
constraint, which according to equations (6.13) and (6.19), is th e 
for large 7”. 

mean value and most probable value 

Notice that the most likely value of p quickly goes to zero. High Y peaks are neither ablate nor 
prolate, but they are definitely triaxially asymmetric, since X2 TJ (X, + Xs)/2. Indeed in the large z 
limit, e and p are small and we can approximate P by a Gaussian 

P&,P) = P&m,Pm)ezP(-(e ;;y - (P$J2), 
e P 

where the most probable values and their dispersions are (for large z) 

em = &(l + Q/(5zs,,lw 

0. = em/& 
6 

Pm = 52’(1+ 6/(5z*))* 

(7.7) 



The cross term o( (e - em)(p -pm) has a coefficient which rapidly goes to sero for large z and can be 
ignored. Thus, though pm goes to zero much more rapidly than e,, the constant Pap contours should 
be approximately elliptical with axial ratios 1.4 to 1, and with principal axes oriented along the e and 
p axes. This is evident from Fig. 7.2. High peaka tend to be more spherically symmetric than low 
ones. This is evident from 7.7: sphericity is approached as (&TV)-‘; the dispersion about sphericity 
approaches zero at about the same rate. 

However, for CDM, we typically have z. = (0.4 - 0.7) 
is expected even for v w 

V, so significant deviation from sphericity 
3. For example, for peaks on the scale R. = 0.5 h-‘Mpc of height Y = 2.7 

in the adiabatic cold dark matter model with R = 1 and h = 0.5, we have 7 = 0.62, hence the most 
probable value of z M 1.52. w 2.5; therefore the most probable e, FJ 0.17 and pm EJ 5 x 10-s by 
equation (7.7). These values are in good accord with Fig.7.2. The eigenvalues would then be related 
by X1 = 1.3X2 = 1.7Xs. The axial ratios (equation 7.2) immediately follow: the long (3) semi-axis is 
only 1.3 times the short one. However, since the short axis goes nonlinear first (collapsing when the 
expansion factor is 1.3 smaller than when the 2-axis collapses in the Zeldovich (1970) approximation), 
this asymmetry amplifies in the nonlinear regime (Lin, Mestel and Shu 1965, Zeldovich 1970). The 
generic collapsed structure will be pancake-like. 

Note that artificial spherical smoothing tends to spherical&e pancakes and filaments, so the 
asymmetry parameters obtained from this distribution will generally be underestimates - unless the 
filtering is physical. 

7.2 THE AVERAGE SHAPE AND ITS DISPERSION 

Though we have determined the shape in the immediate neighborhood of the peak from 57.1, 
we still need to obtain the higher order terms in the Taylor expansion in r. We also wish to determine 
how far out we can go before the density at r becomes uncorrelated with that of the peak. The former 
requires the average of F(r), the latter requires its dispersion. 

A peak is characterized by the parameters C = {v,X1,Xz,Xs,~,~,7}. The latter 3 parameters 
are the Euler angles which define the orientation of the principle axes of <ii. We also let C include 
the information that r’ = 0 is a peak. The shape about the peak would be fully determined if we 
could compute a hierarchy of conditional probability distributions P[F(r;), . . . . F(gN)lC] as N -+ 00. 
Here, we will just compute P[F(?l)lC]dF(?), the probability that at a displacement r’from the peak 
(taken to be at f= 0), the density field has value F. As we show in Appendix 4, this is a Gaus.&n 
distribution characterized by the the mean value of F at 7subject to the constraint C, 

P(,3/3 = (F(qlC)/Q 

= (1 :?*I (ti + W/3) - (12_/772) (&+ v’ti/3) + $Z/7)(#/* - V’@/3)A(e,p), (7e8) 

and the variance (AF = F - F) 

((AF(?))‘IC)/U: = I- & - 

(7.91 
We have introduced the notation $(r) E E(?)/E(O) for the normalized density-density correlatio; 
function as in 56, r is measured in units of R., A is given by equation (7.4) and 111’ s dqb/dr. 
The parameters z, e and p are to be chosen from the distributions 7.5 and 7.6. The dispersion is 
independent of these parameters, and is spherically symmetric. At large distances, the mean also 
becomes spherically symmetric, though this reflects the lack of correlation out there rather than 
indicating sphericity of the actual structures. At short distances, a Taylor expansion of 7.8 in r does 
indeed reduce to 7.4 in lowest order. 

A less useful quantity arises when we average the shape over all possible orientations of the 
principal axes. The result is of course spherically symmetric and depends only on the average curvature 
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of the peak and its height: 

P(f9lQ = (F(+,=,e,P)/nl= (F(r)lv,z)/uo 

= (1 :7y (+ + VV/3) - z’7 (I_ 72) (7V + VV/3). 
(7.10) 

This orientation-averaged mean is independent of e and p and agrees with the mean of equation (7.8) 
if there is no asymmetry, e = p = 0. Also, the dispersion is still given by equation (7.9). 

The mean shape averaged over all possible curvatures as well se orientations, (F(fl/v), is given 
by the same expression ex_cept that z is replaced by its conditional average (Z/Y), which is given by 
equation (6.13). We plot F together with the curves P 5 AF in Fig. 7.3 for parameters appropriate 
to adiabatic and isocurvature CDM models. (Instead of (z), we used z = Z. in this figure. The 
difference is small in this case.) Equations (7.10) and (7.9) for peaks should be compared with the 
average density structure and its dispersion around an arbitrary point with the same height v as the 
peaks (Rice 1944, Dekel 1961): 

(wll+ n* Peak))lQ = VtifJ 
((AF(?))+, no peak))/o,2 = (1- $*(?)). 

(7.11) 

This correlation function profile is also plotted in Fig. 7.3. It falls off more slowly than 7.10. Generally, 
the added constraint that the point is a peak serves to make the profile steeper. Further, the dispersion 
is less than for the ambient field point. The asymptotic limit of the variance with the peak constraint, 

((AF(3)21y, peak)) - o,‘(l- (1 - r*)-V(q), (7.12) 

approaches the uncorrelated limit crz slower than the ambient point doea by the (1 - 71)-1 factor. 
Typically, one can go several filtering radii before the dispersion becomes so large that knowledge of 
the central peak conditions gives us no information about the shape. The werage spacing of peaks 
with Y > 1 is w 7Rf and with Y > 2.68 is u 
coherence before this. 

15Rf in both cases. The shapes have long since lost their 

The typical radius of a peak could be estimated as the distance at which the dispersion in 
the profile becomes unacceptably large. An alternative estimate is simply d/4, where d = 4.OR. is 
the average spacing between peaks of arbitrary height, as determined from equation (4.11b) for the 
integrated number density. 

The average shapes are, of course, more asymmetric than in the example of Fig. 7.3. Aa an 
illustration, we plot (in Fig. 7.4) the density profile along the 1 and 3 axea for the some parameters as 
above, but for p = 0 and the extreme choice of ellipticity e N 0.2 which, according to the distributions 
of 57.1.1, is the most likely value. The mean sphericalized profile of Fig.7.3 and an intermediate 
ellipticity profile are drawn for comparison. 

Though these statistically-averaged shapes are indicative of the profiles we may expect, we 
caution again that they will depend upon the filtering prescription. We believe that they do have 
physical meaning, however, since the profile is coherent out to so many filtering radii. 

7.3 APPLICATION TO HOT AND WARM DARK MATTER MODELS 

The shapes are certainly meaningful if the filtering arises by a physical mechanism. Such is 
the case with collisionless damping in universes dominated by hot (massive neutrino) and warm dark 
matter with adiabatic fluctuations. Pancakes, where the largest eigenvalue of the shear tensor of 
the velocity field, (rl, has a local maximum are apparently the first points where nonlinearity occurs 
(Zeldovich 1970). However, the matter flows away from these regions, accumulating ultimately at the 
points where the deepest potential wells exist - high maxima of the density field F 0: xi gi, the trace 
of the shear tensor. We can analyze the structure and spacing of the typical peaks in these models. 
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According to Appendix 7, the transfer function for the massive neutrino fluctuation spectrum is 
an exponential filtering term times the cold dark matter transfer function. The exponential has both 
s linear and quadratic piece, but the linear term is small. Therefore, it is reasonable to approximate 
the massive neutrino~spectrum by a Gaussian-filtered cold dark matter spectrum with filtering scale 
Rfv EJ 2,6(fI,h*)-’ Mpc. We now discuss the application of the results of $7 to neutrinodominated 
models with R = 1 and h = 0.5. 

Using Figure 4.1, we obtain 7 = 0.73, with the characteristic radius of peaks being R. FY 
1.28Rf, FJ 13 Mpc. The most likely height of the peaks is - 1.5, 35% have v > 2 and 6% have 
Y > 3. The mean separation of peaks of arbitrary height is 52 Mpc, those with v > 2 are separated 
by 76 Mpc, and those with Y > 3 by 130 Mpc. 

The average asymmetry parameters are e - 0.24 , p - 0.03. The structures sre thus slightly 
oblate (with a large dispersion) and relatively flattened so that, with nonlinear amplification upon 
collapse, pancake-like structures are the typical ones expected. 

The flows are definitely not spherically symmetric into the peak, especially as later accretion 
from pancaked-regions occurs. In spite of the asymmetry, one can use s spherical top hat model to 
obtain a crude estimate of the properties of the ‘virialized’ state of such a system upon collapse. As 
the universe becomes nonlinear, much of its mass accretes onto the high peaks resulting in extremely 
deep potential wells (White, Frenk and Davis 1984). For definiteness, let us suppose that the universe 
goes nonlinear at redshift one (oO(Rfy, te) = 2). Then Y = 2 peaks would not completely collapse until 
.z = 1.4, assuming the collapse parameter of 55.2 is fc = 1.69. Collapse along the shortest axis mey haye 
occurred as early as z = 3. The top hat collapsed system would have mess M - 10’s MO, virialized 
radius Rv - 25 Mpc, three-dimensional velocity dispersion 6 - 2000 km u-l, ad temperature 
- 2 x IOsK. It is not clear that the gas will be sufficiently abundant in these deep ‘clusters’ to give 
very large X-ray luminosities, since it csn suffer earlier shocking in pancakes which can separate the 
flow of gas from that of neutrinos. Nonetheless, these numbers do illustrate the difficulties in allowing 
neutrino-dominated universes to go nonlinear even at these redshifts. The properties of, and the 
potential problems with, these huge neutrino clusters were investigated by White, Frenk and Davis 
(1984). Our analysis gives similar cluster spacings end properties to their n-body results. 

For warm dark matter, s best Gaussian filtering choice does not give a good fit to the transfer 
function. The best Gaussian filtering scale would be Rf - 0.4(i2,hz)-1 Mpc (for gXdae = 109 -see 
Appendix 7 for notation). Thus, for h = 0.5 this is similar to the R. = 0.5 h-‘Mpc example used in 
57.1 and 7.2. 

8. DISCUSSION 

There .are two aspects to this paper. One is to present a set of new mathematical results on 
the theory of Gaussian random fields. The other is to suggest how such calculations can be used in 
cosmology to treat rather detailed questions of structure formation. 

8.1 MATHEMATICAL RESULTS 

The main new mathematical results on the statistics of a random field F, smoothed to filter 
short wavelengths are as follows: 

(1) Our calculations of the average number densities of peaks, both differential in height .l&(y)& 
(equation 4.3), and integral in threshold height n,r,(vt) (equations 4.11a, 4.12 and 4.21), end of 
upcrossing points on contour surfaces of given threshold height nu,(vt) (equation 4.20). 

(2) The calculation of the number density of peaks constrained to having a background field smoothed 
on s larger scale of given height Fb at the peak points, nrk(vtlFb) (equation A5.11). The factor E(Fb) 
expresses this enhancement in the presence of en Fb over the average number in a dimensionless way. 
The related constrained probabilty P(Fbl vt, peak) (equation A5.8) of background field amplitude at 
points which are peaks above a threshold was also given. 
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(3) The shapes valid in the immediate neighborhood of a peak are to be determined from the distri- 
bution P(zlv) (equation 7.5) and the distribution of ellipticity and prolateness P(e,plz,v) (equation 
7.6). The shapes,farther from the peak point are to be determined from the Gaussian probabilty 
distribution of values of F(r) given that the center is a peak of given height, value of z and aeymme- 
try parameters and orientation, with a mean profile (F( r V, z, e,p) (equation 7.8) and a dispersion )I 
about this mean given by equation (7.9). Spherically symmetric (orientation-averaged) results were 
also given (equation 7.10). 

(4) Correlation functions of peaks were determined only with approximations whose validity depends 
upon the specific sort of power spectrum ($6.2). (n nph vt, Fi)) was obtained in the limit that grlr- ( 
dients of the normalized two point function +‘J of the field could be ignored (generally in equation 
6.8, approximated by 6.22, and in the linear limit of small Cc, in equation 6.12). The results were 
shown to deviate substantially at moderate threshold from correlation functions computed using the 
interiors (Kaiser 1984a,b and Politzer and Wise 1984) or surfaces (equation A6.23) of contour regions. 
The contour region correlations overly weight the large contour regions. Another useful and con- 
ceptually simple method for the calculation of correlation functions uses the peak-background split, 
(n; np~(vtlFb(~;)) (equations 6.25 and 6.41). The result was shown to agree with the direct calculk 
tion provided the background Rb is sufficiently large compared with the smoothing scale R.. The first 
order ‘dynamical’ correlations (fl; n+(VtlFb(ri)) (1 + Fb(ri,t))) were also obtained in the limit that 
F&(t) is in the linear regime (e.g., equation 6.63 for the two point function). 

8.2 APPLICATIONS TO MODELS OF STRUCTURE FORMATION 

8.2.1 Framework: We used the adiabatic and isocurvature cold dark matter spectra based on initial 
scaleinvariant spectra to demonstrate the use of these statistical formulae in a cosmological setting. 
We emphasize that these methods are applicable to other power spectra which may be considered, 
though care is required in using some of the approximations (especially regarding the correlation 
functions) with steep (high n) spectra. Fits to the power spectra for the two cold dark matter models 
and for the hot (massive neutrino) and warm adiabatic dark matter models are given in Append< 
7. The methods we use can also be applied to the old isothermal and adiabatic structure formation 
models appropriate to baryon-dominated universes. Further, even if it is found that most of the 
structure in the universe arose from explosive (Ostriker and Cowie 1981, Ikeuchi 1981) or radiative 
(Hogan 1983, Hogan and Kaiser 1984) events, rare peaks in an initial fluctuation field would still be 
required to initiate the activity, and these can be analyzed using our methods. The only requirement 
for applicability of this framework is that the field be Gaussian. Ae a consequence of the central limit 
theorem, this is the most likely case, so the implications of such an assumption deserve to be fully 
explored. 

Our calculations give unambiguous answers about the texture of the linear density fluctuation 
field. However, relating structure present in the linear regime to final nonlinear luminous objects 
is a subject open to much debate. Our prescription here WBS to select a special claee of points, 
the peaks of the fluctuation field smoothed by a filtering process applied to the power spectrum. 
We selected only those with heights in some specified range, typically taken to be above a global 
threshold, though restricted ranges of height may be more appropriate for some applications. For a 
given class of cosmic objects, the optimal choice of filter and of the selection function (equation 4.13) 
is questionable. Selection functions might not just be based on height, but on shape and internal or 
external environment of the peak. How to choose functions which select different Hubble types of 
galaxies is unclear. Filtering smooths small clouds into larger ones of lower heights leading to the 
possibility of overcounting of the objects which are truly associated with a given scale. Dynamical 
merging of peaks as structure evolves modifies the observed number of objects of a given scale. These 
difficulties complicate the comparison of the theory of the linear texture with the observations. 

8.2.2 Profiles: Average smoothed profiles associated with the peaks were considered in 57. We found a 
triaxial ellipsoid approximation to be a valid description in the immediate neighborhood of the peak. 
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The average degree of prolateness or oblateness of the ellipsoids is found to go to zero faster than 
ellipticity as the height of the peak is increased, although there is typically a wide dispersion in peak 
asymmetries (equation 7.6). Predominantly spherical or even spheroidal collapses are extremely un- 
likely except for very high peaks. This is predicted in spite of the tendency of the smoothing operation 
to reduce asymmetry. The average shapes valid farther from the peak (equation 7.8) reproduce the 
triaxial ellipsoid in close but become spherically symmetric far from the peak, reflecting not the true 
structure but only that the outer points are uncorrelated with the central peak - expressed by the 
growth of the dispersion (7.9) with distance to the asymptotic rms value ~0. Indeed, the mean spacing 
between peaks of arbitrary height, 4R., implies that beyond - ZR., the variance in the shapes reflects 
the presence of other peaks. Nonetheless, since high peaks are relatively coherent in structure up 
to a few filtering radii, these shape calculations do give a strong indication of the smoothed generic 
collapse structure. 

Unless the filter is physical (aa in pancake models), these profiles cannot be used for hydrody- 
namic or n-body studies of collapse since substructure must be included. Subclumping within col- 
lapsing clouds will be important in determining their final configuration. This cloud-in-cloud problem 
is difficult due to the high degree of correlation of the structure on smaller scales with the smoothed 
structure. The probability P(FblV., peak) can be used to get an idea of the sort of environment in 
which a given peak finds itself. For Rb near to R., the dispersion is small, and the average back- 
ground height, ~6 - (R./Rb)(n+3)‘2 Y* for Gaussian filtering, falls off slowly, showing that the typical 
small-scale peak is not isolated in the background. Though we have no adequate solution to the 
treatment of these subclouds, a crude estimate of the number of peaks in a given top hat region, 
(4~/3)E(Vb)npk(Yt)R~N, was given in $5.4 for ‘bright’ galaxies within an Abel1 radius of the cluster 
center. The value obtained, - lo’, is similar to that observed. 

8.2.3 Average Num6er Densities of Cosmic Structures: Once a selection function is adopted, we can 
determine the average number of objects per comoving volume and relate it to observed values to fix, 
for example, the threshold. In 56.4 we found the threshold required for galaxy formation by equating 
the density of peaks smoothed on a scale R. - (0.2 - 0.4) h-‘Mpc to the density of bright galaxies 
0.01 h3Mpce3. Thresholds in the range vt - 2 - 4 were obtained, depending on threshold function 
assumptions. That the density of bright galaxies is so low is an argument in itself that not all peaks 
collapsing on galactic scale can become luminous galaxies. Of course, this does not necessarily require 
a global threshold. 

The same operation can be applied to Abel1 clusters with density 6 x 10-e haMpeA for richness 
class 1 1. We present the steps in the calculation to illustrate the results of 94. We adopt a Gaussian 
smoothing radius R. CY 5 h-‘Mpc baaed on the mass 5 x 10” h-’ Ma. If we assume an adiabitic 
CDM model with fl = 1, h = 0.5, we can use Figure 4.1 to get 7 EJ 0.73 and R, M 1.27R, at 
10 Mpc. For simplicity, we adopt a sharp threshold. Using 54.3, we require the threshold satisfy 
np~(vt)/np~(-oo) m 0.01, i.e. r+k(vt)Rz EJ 1.5 x lo- ‘. Interpolating between the 7 = 0.7 and 0.9 
lines in Fig. 4.3, we obtain V+ FY 2.8. (Another method valid in this regime would be to invert 
the upcrossing density (4.20). A selection function with a soft threshold would require a numerical 
integration over the differential peak number density (4.13).) For clusters of this threshold height to 
have collapsed by now (in a spherical top hat model) would require ~(5 h-‘Mpc) = 1.69/v, FJ 0.6. 
This, in turn, implies that on galactic scales ~(0.356 h-‘Mpc) c 4. Normalization to the galaxy 
clustering data in s6.6 gave the value 3 instead. Lowering the collapse factor f, for rich clusters could 
bring these numbers closer. This problem is discussed more fully in s8.2.7 below. Similar procedures 
could be adopted for determining thresholds for each richness class of Abel1 clusters in turn (Kaiser 
1984a). 

Bond, Szalay and Silk (1985) have suggested that intergalactic Lyman a clouds are associated 
with primordial peaks filtered on - 1Oa kpc scales with a hydrodynamically-determined selection func- 
tion arising as a consequence of re-ionization of the universe. The predicted density of selected peeks 
as a function of redshift can be compared with the observed density to test the theory. Appropriate 
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selection functions for dwarf galaxies (Dekel and Silk 1985) may also lead to a confrontation of cold 
dark matter theory with observation. 

We have not been able to find an appropriate mass function n(M)dM for the objects due to 
the cloud-in-cloud problem. 

82.4 Peak Enhancements in Overdense Regions: Clustering is a consequence of two effects. One is 
statistical in origin: our peaks were already clustered when selected since peeks are preferentially 
found in overdense large scale regions; this effect depends only on the background height ~6, not on 
the amount that the background field has grown, i.e. on go(t). The other is gravitational in origin: 
the peaks move with the mass as it flows into overdense regions out of underdense ones; thii does 
depend on the amplitude no(t). In the CDM models, we find that each is about equally important in 
determining the current degree of correlation of galaxies. 

Assuming that peaks flow with the mass, the enhancement factor E(v~) of peaks in overdense 
regions (5.10) derived from )I~~(&) can be applied to the computation of peak-t-mass ratios, and, 
if a luminosity is associated with each object, of M/L ratios. We applied this to the enhancement of 
galaxy number in rich clusters in 55.4 and found E - 3 - 10 for peaks associated with the thresholds 
appropriate to ‘bright’ galaxies. These values are sensitive to the choice of cluster filter and collapse 
criterion. We normalized the time of galaxy formation with the galaxy correlation function. We also 
predict that M/L should be higher in the outer regions of clusters and be smaller in denser clusters. 
The same methods can be used to estimate the paucity of peaks in voids. Also, if we take super&&r 
environments as background constraints, we find even stronger enhancements in the cluster number 
per Inass. 

8.2.5 Statistical Correlation Functions: We presented a very detailed discussion of correlation function 
calculations in the two CDM models since this represents one of the most powerful applications of 
Gaussian statistics to cosmology. We first determined the correlation functions due to the statistical 
clustering effects alone, then included dynamical effects in the linear approximation. TWO different 
calculational methods were applied to statistical clustering. The most accurate used equation (6.21), 
the n-point function determined assuming the peaks are sufficiently far apart that derivatives of $ 
can be neglected. All nonlinear terms must be included, however, unless one is only interested in 
the linear regime of the peak correlation function. The peak-background split, equation (6.41), is 
somewhat easier to use, but only becomes accurate at a larger separation. The two-point correlation 
functions were determined assuming a global threshold exists for galaxy formation which is found 
by normalizing to the galaxy density. The choice of smoothing radius is debatable, so a range was 
selected. The principal results (Table 6.1 and Figure 6.1) show that (1) in the large separation limit 
the peak correlation function is proportional to the (normalized) mass density correlation G,,, but 
is amplified by the square ((fi)‘) f o an effective threshold (equation 6.14) which is significantly less 
than v:; (2) in the nonlinear regime, &,pk > 1, the spectrum is quite close to a power law. What 
is remarkable is that these statistical correlations lead, for the adiabatic spectrum, to a fairly good 
r-1.S power law. The slope is somewhat sensitive to the choice of filtering radius. Without including 
any dynamics, the isocurvature model with the smaller filtering radii already gives cPp* nearly one at 
r. = 5 h-‘Mpc, the point where the observed galaxy correlation function is unity. The adiabatic fPk 
is a factor * 5 smaller. 

The (connected) three-point (statistical) correlation function of the galactic peaks gives values 
of Q defined by equation (6.49) near to that observed (- 1) for the adiabatic CDM model. However, 
a significant amount of dynamical evolution of the three-point function over the scales where it has 
been reliably determined would be expected, and this may modify the good agreement between theory 
and observation of Q. 

8.2.6 Dynamical Correlations and the Redshift of Galazy Formation: Inclusion of dynamics is very 
complicated because the peak number density per physical (as opposed to Lagrangian) volume at the 
Eulerian position Z at time t depends not only on the 1+ F enhancement associated with the transition 
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from Lagrangian to Eulerian volume, but also on the complex statistical field ?(Z, t) describing the 
motion of the peaks through Eulerian space. Only by ignoring the latter effect has the problem 
proved tractable. ~The approximation procedure adopted in 56.6 involved using the peak-background 
split, requiring Fb to be in the linear regime, and neglecting this intrinsic motion of the peaks. On 
large scales, this should be adequate, and the result is given by equation (6.63). For &,k < 1, we find 
Epk(r,t) CJ b2(t)fp(r, t), where b = (fi)/uo.(t) +l, which measures the amplitude of biasing, is typically 
- 2. 

Requiring &(r,, to) = 1 sets oo on galaxy scales at the present, giving a normalization to the 
power spectrum which fixes when structure collapsed on all other scales. Together with the galaxy 
formation threshold, (ho determines theredshift of galaxy formation l+z, = f;‘(~)uo (Table 5.2). For 
definiteness, we discuss the fl = 1, h = 0.5, 4 = 8 adiabatic CDM example with R, = 0.356 h-‘Mpc 
and f= = 1.69. Then V+ FJ (v) M 2.8 and ~0 FJ 2.4. Since objects on thii scale with v > f.00’ = 0.7 
will have collapsed by the present, we must suppose ‘bright’ galaxies were not made below the redshift 
zg = 2.9. It is not clear what these ‘failed’ galaxies should be identified with observationally; they 
could just be low surface brightness objects. 

The prediction that galaxy formation occurred as late as the epoch tg EJ 3 - 4 may already be 
in trouble with limits from primeval galaxy searches. Koo (1985) estimates that Z~ > 5 is required, 
though, with slow steady star formation rather than a burst at galaxy birth or dust *e-radiation of 
the starburst energy in the infrared, such a strong limit can be avoided. We may rather regard a late 
galaxy formation epoch as one of the exciting testable predictions of biased galaxy formation. The 
collapse of halos at late times apparently does lead to appropriate halo profiles (- r-‘) and velocity 
dispersions for spiral galaxy models in the CDM scenario (Ryden and Gunn 1985, Carlberg and Lake 
1985, Miller 1985, Primack etal. 1985, Frenk etal. 1985). 

The amplitude of the statistical correlations in the isocurvature CDM picture implies there 
is very little room left for dynamical evolution. Even for the larger galactic filtering radii in Table 
6.lb, the strongly inadmissable value zp - 0.1 was obtained. In addition, the isocurvature models give 
large angle microwave background anisotropies and large scale velocity fields in excess of observational 
constraints (Efstathiou and Bond 1985). 

8.2.7 The CIuater Threshold Problem: Fixing co on galactic scales also fixes the threshold for peaks 
on rich cluster scales which will have collapsed by the present. Consider the adiabatic CDM example 
of 58.2.6. Scaling uo(O.356 h-‘Mpc) EJ 2.4 for h = 0.5 to (Gaussian) cluster smoothing scales, we find 
aa(5 h-‘Mpc) a 0.4. Using a collapse parameter fc = 1.69 leads to the threshold it N 4.4; in $8.2.3, 
we found V, EJ 3 wa4 required to reproduce the cluster number density. Thii special cake illustrates 
a general problem with biased galaxy formation: pushing the epoch of galactic scale nonlinearity oo 
down due to the galaxy correlation function bias also pushes down the amount of dynamical evolution 
on large scales so that clusters which have collapsed might be rarer than observed. Since o,(R,) falls 
off significantly with increasing Rf, larger filtering radii (which may be appropriate for Abel1 clusters 
of higher richness class) lead to more severe problems. Another prediction of the model is that the 
threshold would be a factor of 2 higher at redshift 1, implying collapsed clusters would be exceedingly 
rare then. However, an enhancement in the number of galaxies is predicted where rich clusters will 
eventually form, so ‘statistical’clusters may be seen. If an abundance of collapsed (virialized) clusters 
similar to that observed at .z - 0 can be shown to exist at z - 1, the simple biasing hypothesis in the 
adiabatic CDM scenario can be ruled out. 

Though the cluster density problem indicates the adiabatic CDM spectrum may lack sufficient 
power on large scales with the biasing normalization to adequately account for the observed large scale 
structure, we do not yet regard it as a fatal flaw for the model. Uncertainties in cluster smoothing 
scales and collapse parameters due, for example, to subclustering, asymmetric collapse and lack of 
virialization make our estimates imprecise. This large scale structure issue certainly warrants further 
investigation. The adiabatic CDM spectrum with fl = 1 and a global threshold imposed for galaxy 
formation does offer a promising explanation for the clustering properties of galaxies and a possible 
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reconciliation of low M/L ratios in clusters with a global Zt = 1 mass density. 
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APPENDIX 1: Derivation of U,,(v) 

We follow the Rice notation for the derivatives of the random field F(F’, t): vi = V$, cij = 
ViVjF. The correlations of these fields at an arbitrary point are: 

(FF) = 002, (%Vj) = ?/&j, 

(Fcij) = -$Sij, (S&d) = $(sijSkl + Wjl + 6il6jk) 
(Al.l) 

(hi) = 0, (Wjk) = 0. 

The joint Gaussian probability distribution for the variables F, q;, and $ij is given by equation 
(2.2). DIM to the symmetry Of sij, only 6 components are independent. We label them by <A, where 
the A = 1,2,3,4,5,6 components of the 6dimensional vector refer to the ij = 11,22,33,23,13,12 
components of the tensor. The covarince matrix M thus has dimension 10; however 6 of the dimensions 
are already diagonalized ({pi, <A, A = 4,5,6}). To diagionalize the remaining 4 dimensions, we 
transform to a new set of variables: {& A = 1,2,3} + {z, y, z}, where 

~22 = -V’F = -(<I + 52 + $3) 

CZY = 451 - d/2, Q2Z = -(51 - 252 + f9)/2. 
(A1.2) 

We also introduce v = F/u,,. With these choices, 

V) = 1, (2) = 1, (zv) = 7, (yZ) = l/15, (22) = l/5, (A1.3) 

and all other correlations are zero. Thus, the matrix is now diagonal in y and 1. The quadratic form 
Q appearing in P 0: e-0 is then simply 

2Q = 2 + :“,r$ + 15y’ + 5a’ + y + 5 A?$ (A1.4) 
A=. 

2. E y, 

4 YE--- (k*) 
Q*Q = +E. 

(A1.5) 

At the moment, the variables z, y, and t are defined for an arbitrary choice of axes. The 
correlations given by equation (A1.5) are independent of this choice. We now restrict our attention 
to the principal axes, and introduce the eigenvalues X; of (-$ij); therefore, $A = -XA, A = 1,2,3, 
and z, y and z are now defined in terms of the X’s. The other 3 degrees of freedom in the matrix 
can be expressed in terms of the Euler angles Q, p, 7 required to define the orientation of the triad of 
orthonormal eigenvectors of <ii. 

In Appendix 2, we prove that the volume element for the space of symmetric real 3 x 3 matrices 
can be expressed in terms of the eigenvalues and Euler angles (a, 8,7) 

Ajldi* = bb -b&b - h)(X, - Xs)~dX,d&d&+, 
(~1.6) 

d&t = sm ,8dfldady. 

Here, dnsa is the volume element on the surface of the 3-sphere. Since Q is independent of the 
Euler angles, an expression of all triad orientations being equally probable, we can integrate over the 
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3-sphere, whose volume is 2a’. The factor 3! arises if the eigenvalues are not ordered. A first set of 
rotations of one of the coordinate axes to one of the principal axes requires only 4x/(2.3) steradians 
of solid angle; the~2 comes from not caring whether the rotated axis points in the positive or negative 
direction; the 3 comes from the one chosen axis necessarily being within 4n/3 steradians of a principal 
axis, unless one of the principal axes is chosen for some special property (e.g. largest eigenvalue), and 
the principal axes are labelled according to this ordering. Having fixed one of the principal axes, a 
rotation in the plane perpendicular by an angle at most 2a/(2.2) will align the other 2 axes with the 
principal ones; again, 2 comes from not caring about the direction of pointing, and 2 comes from not 
trying to align labelled axes. The total volume of Ss needed is therefore 2**/3!. To transform from 
Xi tO Z, y, 3, We &O need 

fix d& = +,Sdzdydz 

This 2/3 is compensated by a 2/3 that arises in transforming the determinant in the c’s to one in the 
Z) y, + system. 

The relevant joint probability now becomes 

P(v,fj,zz, y,t)dvd%jdzdydr = N12y(yZ - r2)le-qdvdzdydr$, 

N = $g&%(l o&. 
1 

(A1.7) 

No assumptions have been made so far about the ordering of the eigenvalues. We now enforce the 
order 

h 2 x2 1 b3. (A1.8) 

Since there are 5 other possible orderings we could have chosen, and P is invariant under changes 
of ordering, we must multiply the probability expression by 6 to account for this. This compensates 
for the 3! lowering of the available Ss volume due to the identical nature of the axes. Thus, if the 
eigenvalues are ordered, the entire volume of Ss is available for triad rotation to the principal. With 
this ordering, the constraints y 1 .z 2 -y, y I 0 are imposed. These are the only constraints 
necessary if we are considering all extrema, for which the Xi can be positive or negative. A further 
constraint does arise if we require all eigenvalues to be positive - as is necessary for maxima. With 
our ordering convention, this amounts to the requirement that Xs = Q ((z + 2)/3 - y) be positive. 
This is the extra constraint on the z - y - a domain of integration needed to deal with maxima. 

We now consider the consequences of requiring that V’F vanish at an extremum. The shape 
of the random field F(rJ in the neighborhood of the peak point TP is determined by a Taylor series 
expansion: 

J’(r3 N J’(Tp) + i CfdCI(~ - ‘p)i(r - rp)j, rli(3 fl CSijtTp)Cr - r*)j. (A1.9) 
ij i 

The furl random density field for the maxima of height between ~0 and y. + dv is 

npk(?, vo)dv = c 6@)(r - rP) 

= & (S-‘)$I e(h)O(A,)O(A,) S(Y - vo)dv 

= Id&)1 S@)[rjj e(A,)S(X,)S(X,) S(Y - vo)dv. 

(A1.10) 

Here, 6’ is the Heaviside unit function. Ideally, we would like to know the probability density functional 
of this random field. Notice that such a functional would be that of a point distribution, since there 
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are only countably many zeros of Fj, each separated from the other (Adler 1981). This general problem 
appears to be Intractable. In this paper, we only determine the average of this expression. 

The average peak density for maxima of height v,, is therefore given by 

%kb%b+ = (%k(c %)w = &W&~ qb)6(v - VO)) dv. (Al.11) 

Of course this mean density is independent of the position due to the homogeneity of the underlying 
random density field, so we suppress the r’ variable in the following. We also denote the average by 
u Pk. 

To calculate Al.ll, we need to derive a number of results along the way which are useful in 
their own right. By introducing extra &functions in A1.10, we can further restrict the class of maxima 
we are considering to be those with the parameters z - y - z ss well sa v in specific i&nits&n& 
ranges. The density of this class of peaks is then 

N&‘~z~ yaz) dvdzdydz = 
56/231/2 (s)J 

(2rjs o1 (1 _ ~1~1,1 c4 F(z, y, E)X dvdzdydz, 

s = g + $-$ + ;(3yz + 2), 

(A1.12) 

where 

F(z,y>4 = ~~;%x,xs(x~ - x,)(x, -x,)(x, -A,) 

= (z - W((z+ %)’ - (3y)7y(yZ - IZ), 

(A1.13) 

and x is a characteristic function which is 1 if the constraints in the z - y - I domain are satisfied 
and is 0 if they are not. This density is used in Appendix 3 to get the probability distribution of thk 
asymmetry variables y and z. 

We can integrate Al.12 first over z then over y to get the density 

&khz) dvdz = (2r)~Rf 
e--u’/2 ,(=) -Id- $+q 

(2*(1- -p))‘/Z dvdz. 
(A1.14) 

The integrals over z and y are contained in the function 

f(z) = s o 
(I 

44 
F(z,y,r) e-+‘dz + J 41 /b”dy 

44 J Y 
F&y,%) e-+‘dz . 

sy--z 

The computation of f(z) is tedious, but the result can be expressed in closed form: 

f(z) = (2 - 32)( erf( (p ) + erf( (p/2 ) )/2 

+ (&“” ((3122/4 + 8/5)e-Q/8 + (a?/2 - 8/5)e-5”9. 
(A1.15) 

The asymptotic limits of this function include a remarkable cancellation to eighth order at small z 
and the zs law expected for spherical peaks at large z: 

f(z) -+ 365s’2 z* (1- 5z*/8) 
7 2+&T 

as 2-O 

-+ 2 - 32 8s z-+00. 

(Ai.16) 
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A reasonable approximation to this function is given by 

f&) = 2 - 32 + 4.08/22 for z 2 1.5 

28 
= 

13.2(1+ 5za/S) 
for 2 < 1.5. 

Another fit appropriate to the large z limit is given by equation (6.19). Whereas the function 
exp(-w) is rapidly falling as z increases, f is monotonically and rapidly rising: the product 
gives a relatively symmetric function with a clear maximum. (See Figure 7.1 for the plot of a function 
proportional to this product.) 

We must integrate Al.14 numerically over z to obtain the differential density of peaks in the 
range v to u + dv: 

-- Jpkb’) dv = c2$2 ( ~~1)3e-ya/zG(?,=.)dv. (A1.18) 

The function 

C(7,z.I = J - dz f(z) =w(-$&) 0 (241- 7Z))‘P 
(A1.19) 

is very accurately fit by equation (4.5) if the coefficients are given by equation (4.6). The fit was 
obtained by determining the asymptotic large Z, expansion of G (equation (4.5) with all C; = 0), 

then adding the appropriate nonzero C’; to get accurate results at low 2.. 

To obtain the number of peaks in excess of Y, n,&(V), a further integration is required. Again 
this integral must generally be done numerically, even using the approximate formula for G. 

The evaluation of the density of upcrossing points (4.20) and of the Euler characteristic (4.15) is 
straightforward. The <part of the calculation is trivial since the vi are statistically independent of the 
other variables. The rest of the calculation is most easily accomplished if the variable combinations 

= = (s11+ s22)/02, b = (h - sd + (2~12)*)~‘~/(202), 4 = arcton(2h2/(S11 - s21)) 

are used in place of the < variables, for all 3 are independent of each other and only the first is 
correlated with V: 

P(v, a, b, 4) dvdadbdc$ = 
(15/8)‘12 

2n(l- 57*/6)‘j2 
ezpl- (v2 - 57~n/2 + 15+$ dvda 

2(1 - 572/6) 

x e(b)ezp(-15b2/2)15bdb $$. 
(A1.20) 

4 has a random phase distribution and can be immediately integrated. Also, since cllfza - & = 
a2/4 - b*, the b integration is straightforward in spite of the absolute value constraint. The simple 
analytic forms (4.15) and (4.20) f o 11 ow because the range of the a integration is (-00,~). 

APPENDIX 2: The Volume Element in the Space of Symmetric Matrices 

In this Appendix, we sketch the proof that the volume element in the 6dimensional space of 
symmetric real matrices is given by 

where 

d ml= fi d<A = 1(X, - X,)(X, - X,)(X, - Xs)ldXldXadXs d vol (SO(3)) 
A=, 

(A2.1) 

d vol (SO(3)) = sinp’dfldcrdy 
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is the volume element of the 3-dimensional rotation group SO(3) and also of the 3-sphere, the space 
which the Euler angles (01,7 E [0,27r], p c [0,x]) coordinatize. 

We define the inner product of two symmetric matrices S1 and S, to be Tr(SIS2). The metric 
in the space of symmetric matices is ds* = Tr((dS)z) w h ere S is a symmetric matrix. Now S can 
be diagonalized by a rotation R to a diagonal matrix X = diag(X1,X2,&): S = RtXR. &ace, 

dS = Rt(X + [A, RtdR])R, where [ , ] denotes the commutator. Thus, 

ds* = Tr((dX)‘) + Tr[X, RtdR]’ 

The cross terms disappear since they involve the trace of a product of a symmetric and an antisym- 
metric matrix. Now, (RtdR)ij = ‘. $kWk is antisymmetric, where wk iS a vector (infinitessimal) and 
c;jk is the alternating symbol, so [X,RfdRlij = (Xi - Xj)~;~kwr;. Thus the metric on the symmetric 
tensors is 

da2 = c(dAi)* + (A, - X&J: + (A, - X,)*w; + (A, - &)‘w; 
i 

with orthonormal basis 

{dhdhdh,lb - WJI,~& - x,lw~,lx, - x,lw~}. 

Since the volume element is the ‘wedge product’ of orthonormal basis elements, we have 

d vol= ](A, - A,)(& - X,)(X, - Xs)ldX,~dX, ~dX.q~w, /!w2 AQ. 

However, the matrices RtdR form the Lie algebra of SO(3), th 
volume element of SO(3) is given by 

e wi form an orthonormal basis, so the 

d vol (SO(3)) = w, A w2 A wQ, 

That the (unnormalized) volume element of the rotation group is in fact the same as the vo]ume 
element of the 3-sphere and is given by equation (A2.2) is standard. 

APPENDIX 3: Conditional Probability for Ellipticity and Prolateness 

The conditional probability for the parameters y and + subject to the constraint that the point 
is a peak with given values of v and z is simply obtained by taking the ratio of Al.12 and A1.14: 

3z56’a F(z, y, L)X 
Pb>4wVyd~ = a rtzj 4;(3yP + 2)) 

where F is defined by equation (A1.13) and x is the constraint characteristic function. In 57.1 we 
introduced the ‘ellipticity’ and ‘prolateness’ parameters 

e = Y/Z, p = z/z (A3.2) 

in terms of which 

x(e,p)=lifO<e~~and-e<p<e 

=lifa~~~~and-(1-3s)<p~e 

= 0 otherwise. 

(A3.3) 
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Notice that equation (A3.1) is independent of V. To obtain equation (7.6) for the conditional probe 
bility P(e,plz), we introduce the polynomial 

W(e,p) = Lc-* F(z, Y = e=, z = PZ) x(~,P) 

= e(e2 -pZ)(l- 2P)((l +P)* - @)x(e,p). 
(A3.4) 

The nature of the contour plots of P(e,plz) g’ wen in Fig.7.2 suggest that a Gaussian approximation 
centered about the most probable values e, and pm 
v z W ,+(-‘+P2) by 

may be a good approximation. If we approximate 

InV a -(pa + 3.$5x2/2 + 3 In e -pa/e’ - 3pz - 2p3 - 9e’ + 18e’p 

then use the zeros of the gradient of V to obtain the most probable values, we get equation (7.7). 
Similarly, we define 

CT, = m-f - G (hh) ( > 
with an equivalent definition for or,. There should generally be a cross correlation in this Gaussian 
approximation, but this term only adds 

(em,~m) = ‘30~7. 

The eigenvalues of the quadratic are only modified by a term CC ek, and we can ignore this term 
provided z is large. 

APPENDIX 4: Density Profiles 

To illustrate the methods we use for calculating probabilities, we present details of the derinr- 
tions required for $7.2. If we denote by &(v,$, F(r))dvd’fdF(r) the density of maxima with height 
Y in the range Y to v + du, $A, A = 1, . ...6 in the range $A to Q + d$A which have the field in the 
range F(r) to F(r) + dF(r) a distance r away, then the conditional probability that F(r) falls in this 
range subject to the constraint that there is a peak at r’= 0 of height v with second derivative matrix 
s.4 i= 

pF(F(r)Iv,SA)dF(r) = Upk(u,f,F(‘))dvd’SdF(*) 
&k(=‘,<)dd< 

(A4.1) 

See the discussion in 53 for a justification of this. Here, 

&(q$,F(r))dvdBfdF(r) = ldet 51 P(F(O)/o,, = v,f(O) = O,f,F(r)) dvd’cdF(r). (A4.2) 

There is also a constraint condition that 5 be negative definite if the extremum is to be a rnax- 
imum. The probability distribution appearing here is a multivariate Gaussian. The equation for 
&(v,<)dvd’$ is similar to A4.2. In particular, when the ratio in equation (A4.1) is taken, the ldet $1 
terms cancel, leaving the constrained probability A4.1 as a ratio of multivariate Gaussian distributions. 
There is a general theorem which is extremely useful when working with such ratios. 

Theorem: If p = (?~,pn), ?A and ?n are all Gaussian-distributed, where ?A and ?s are 2 vectors 
of arbitrary length dA and dg, then the conditional probability 

PVBl~A7A) = P(~A,G)/P(F”), 

is a Gaussian with mean 
VBI~A) = (?B c3 ?A)(P,J @ gJIYJ 
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and covariance matrix 

(A?+B @A?B/~A) = (?B @?B) - (pn @?,#~@~4)-=(~~ @pn), 

where A?n z ?n - (?n\p~). (We have assumed both (p n and (?A) vanish.) The tensor product ) 
notation pi @ ?4 just makes a dg x dA matrix out of the 2 vectors in the obvious way; t denotes 
transpose. The proof is straightforward. (See, for example, Adler 1981.) 

In our case, fn = (F(r)) is a one-dimensional vector and ?,4 contains all the other variables 
(~,(j;f~). The constraint values of q vanish of course. As in Appendix 1, we find it convenient to 
introduce the z, y and z variables instead of <A, A = 1,2,3, for then many of the cross correlations 
vanish and the correlation matrix of p~ is largely diagonal (see Eq.Al.3). We also choose to work 
in the principal axes system, so <A = 0, A = 4,5,6. The explicit dependence on the Euler angles 
disappears. These degrees of freedom were used up in defining the orientation of the axes. The 
application of the theorem then gives us equation (A4.1) as a Gaussian with mean 

(WIG) = t1 T7zI (W) - 7(Fz))+ 

(1 Z7’) 
((W - 7(Fu)) + 15(Fy)y + 5(Fz)z 

and variance 

((AF(r))*IC) = u,” - 3 + 2& (Fd(F+) 

P# - - - 15(Fy)’ - 5{Fz)’ - f: ;(Fg.,)’ - 2 $(F#. I-72 A=, is1 

(A4.3) 

(A4.4) 

The identity 

3~aibi-~ai~bi=6(a’;aJ)(b=~bJ)+2(LI=--~1+Os)(bl-2~+b~), 
i i * 

where oi and bi are 2 vectors, is useful in transforming back and forth between Xi and 2, y, +. It aids 
in proving the result 

15(F~)~ +~(Fz)~ + f: $(FcA)’ = $(2(E’/r)2 + (t”)‘) - I’ 
,4=4 

Here, .f = (F(r)F(O)) E o@(r) is the correlation function. Also, C (Fqi)’ = (E’)’ is required for the 
variance. 

The mean and variance are therefore given by equations (7.8) and (7.9). Notice that the 
dispersion does not depend upon the parameters characterizing the peak. Also, it only depends upon 
the magnitude of r. Far away from the point r, all derivative terms die quickly, giving the asymptotics 

(WIG) -, (1 T ;;I cl, ti2 (@F(r))21C)/d -+ 1 - - 
1 - 71 

a8r’co. (A4.5) 

Thus, a long distance away from the peak the asymmetry is forgotten, and the average profile is 
proportional to the density correlation function. This behavior is only due to the outer regions 
becoming uncorrelated with the inner. This is reflected in the large dispersion beyond a few filtering 
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radii (Fig. 7.3). An expansion of equation (7.8) about r = 0 yields the triaxial result, equation (7.4), 
to O(r’). 

If we forms the conditional probability for the density at F(r) and the Euler angles defining 
the principal axes orientation, P(P(r),n,fi,71 v,z,e,p), then this takes precisely the same form as 
equation (7.8), since the distribution of the Euler angles is simply that appropriate to all orientations 
being equally likely (equation A1.6). If we now form the conditional average over this distribution, the 
average over the Euler angle distribution just amounts to an integration over 6’ and 4, which results 
in the A-term integrating to zero. Therefore, we only need Y and n to specify this mean which is 
orientation-averaged and thus spherically symmetric: 

(F(r)lv,z,e,p) = (F(r)144 = (1 ;72)(++72v*1/1/3) - (1 :;*+++ W/3) (~4.6) 

The dispersion equation (7.9) 1s a ready orientation-independent, so this is the result upon averaging 1 
over the Euler angles. 

The distribution 

P(F(r)Iv, peak) = 1 P(F(r),z,cr,~,-+, peak)dzsin,8dadad7 

is a non-Gaussian one, involving an z-integration. Nonetheless, it is easy to show that the dispersion 
is still given by equation (7.9) and the mean by equation (A4.6) with (zlv, peak), the average of z 
subject to the constraint of being at a peak of height Y (equation 6.13), replacing z in equation (A4.6). 
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APPENDIX 5: Peaks in Background Fields 

In this appendix, we derive in sA5.1 the probability distribution for the background field to 
have a value Fb at a given point subject to the constraint that there is a peak at that point in the 
field smoothed on some smaller scale, F.. In sA5.2, we obtain U,~(v.lub)dv,,, the number density of 
peaks in the F. field of height between Y, and Y, + dv, subject to the constraint that the background 
field has height Fb = Vb(T,,b at the peak point. 

sA5.1: CALCULATION OF P(V&IY.) 

According to the theorem given in Appendix 4, the probability that the background field has 
height I+ subject to the constraint that there is a peak characterized by the data C of 57.2 and 
Appendix 4 is a Gaussian. The mean and dispersion can be calculated in the same way that the 
profile was calculated. Since the correlations of Fb(O) with vi, y, z and <A, A = 4,5,6 all vanish, these 
are especially simple: 

fib = +‘blC) = b’blb, 2.) 

= j-+(1 - 731) - 7.41- r1)) 

(Ah)* = (@Y)~IC) = (b’b)*lb> %) 
cl- &Cl - 2731 + 733. 

. 

(A5.1) 

We have introduced the following notation for various spectral averages: 

Quantities with the subscript 8 and b are defined as in 54.2. C. and C, denote general filtering 
functions defining the F. and Fb fields. 

If both C. and Cb are Gaussian then the quantities in equation (A5.2) can be determined from 
equation (4.10). In that case, the Fb, F. cross correlations are also given by equation (4.10) with the 

filtering scale being the rtn8 average Rp, 3 ((R,2 + Rz)/2)“‘. If we also assume that the unfiltered 
spectrum is a power law, the parameters which enter into this expression are 

c=(- 
i?& =$+ 

R: ) 
-+ (2&/Rb)* 

. 

rl = (R./h)* + 2(R./R# 

7. = ( 

(A5.3) 

The limits are valid for R. < &.. In that case, the dispersion deviates from unity only by a term of 
order c* and the mean & + w. with dispersion 1 for high peaks. This average should be compared 
with the value of vb obtained if the one peak of height v. on scale R. is just smoothed to the scale Ra, 
for that contributes a term - (R./&)“(u~./u~~)v. - (R./Rb)(a-n)“v.. For steep spectra (n > 0) 
this may be larger than & - (R./Rb)(3+“)/2 Y., whereas for shallow spectra (n < 0) with a significant 
amount of power between the two smoothing scales, it is smaller. 
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It is not surprising that this conditional probability is independent of the orientation of the 
principal axes and the asymmetry of the peak. Thus, the conditional probability subject only to the 
constraint of peaks with fixed height V. and curvature parameter z is 

p(+.., 2.) = 
-%dvb, Ya> 2.) 

Jpkh 2.) 

= GAY, ezp(- ~(Av# 
(Yb - %)*l, 

(A5.4) 

We can use equation (A5.4) to obtain the joint differential number density of points which are 
peaks of the smoothed field of height V. and have the background height Y&: 

%k(“b,%) = l- dz p(vbb’., 2.) &(u.,z.) 

= G(j,jC) ~ZP( - w) &P 

(‘J*)‘R?e (1 - +/* X’ 

Here, 

(A5.5) 

(~5.6) 

The tilde variables are introduced only for convenience in expressing the result. In the limit in which 
the background scale is sufficiently larger than the smoothing scale R. that rl ~j 0, these parameters 
become 

” -+ %v 

+i -+ 7P as r1 -+ 0. 

where we have defined the ‘peak-field’ parameters 

VP E (v. - CVb)/(l - t*)l/a 

rP = 7./(1- cy*. 
(A5.7b) 

We have not required that c be small. For most spectra, rl falls off faster than E (Eq.A5.3). h this 
limit, the joint density is simply 

&k(ub,Va) dub& -+ $k(+;7p)d+ P(&ha. 

Recall that Fb is Gaussian-distributed: 

(A5.7~) 

P(Vb) = eZp(-U;/2)/Jz;;. (A5.7d) 

Equation A5.7~ is usually an excellent approximation, for it is only in G that the deviations occur. 
The relations between the tilde and peak arguments of this function can be used to estimate when 
the full formula A5.5 should be used: 

;la/7; = 1 - 2&(1- rJ2) 

=rfi = 7,V*(l - l %,) + 7&3L3. 
(A5.7e) 
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We C(LII form the conditional probability that the background field has height yb given that the 
peak has height Y,: 

P(v&)dvb s N;P?;;)dvb 

ezp(-(w) - -- 

= (2s(l- cz))V2 d”6 GT;:,$J 

In the R. < Rb limit, this becomes 

(~5.8) 

+‘bh)d~b = +b)d+k(h - Wb)/J&k(V.). (A5.9) 

The constrained probability that the background field has height vb given that the smoothed 
field has height Y, if the point is not required to be B peak of the F.-field is 

p(+., 
(Ub - 42 

no peak Id’% = (2&2))1,2 d-- 2(1 _ es} ) dvb. (A5.10) 

This yields the average (Y*~v., no peak ) = EV., the high Y# limit of the result with peaks. Equation 
(A5.10) has been used by Blumenthal, Faber and Primack (1985) with top hat filtering. In the limit 
that V. is high, the deviation from equation (A5.8) is small. 

gA5.2: CALCULATION OF &(Y&) 

The number density of peaks in the F. field at points with the background field of some specified 
height also follows from the joint density A5.5: 

hlp&IVb)dV. E “$?;y)dv. 

WL+‘) --up dv 
= (~T)~R:,~ ’ 

In the R. << Rb limit, this becomes 

(A5.11) 

lpk(v.IYb) Rf &,k(Vp)/(l - C2)1’2. (A5.12) 

Notice that VP E (v” - (Y&b)vb) (1 - (v,V&)‘)-~‘~ is uncorrelated with &$, and is Goussion- 
distributed with variance 1 and zero mean. The following simple approximation, valid in the limit 
R. K Rb, is useful: &(Y.IVS) dv. w &(vp) d vp 
of up in the differential density. 

with 7p and R., evaluated from the power spectrum 

If we drop the restriction that the F. point be a peak, then the conditional probability that its 
height be V# given that the height of Fb is Vb is identical to equation (A5.10) ifs and b sre interchanged: 

P(%, (h - =‘b)2 
no peak lvddva = (2rr(l :c21)1,2 ed- 2(1 _ <2) ) dv. 

(A5.13) 

Once again, it is the field vp which enters. 
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APPENDIX 6: Asymptotic Peak Correlation Functions 

In this appendix, we determine the n-point correlation function of peaks in the limit that 
terms involving gradients of $(r) can be neglected in comparison with terms involving cl, alone. Since 
d”$/dr” falls off a factor of r-n faster than + for large r, this approximation should prove accurate 
in the small $ regime. These asymptotic results are based on work in progress by Bardeen, Bond, 
Jensen and Szalay (1985) where the 2-point function of peaks is calculated for all r, and small and 
large distance expansions are given. 

We label the positions of the peak points by ri, i = 1, . . . . n. The (““reduced) n-point correlation 
function of the peak densitites is 

(nnnpkti)) = ( fl 6@(i) - F(c)/Q) h(ibb(h(i)l 0(&(i)) 6(<(i)) ). (A6.i) 
I I 

To evaluate this, we need to know the joint Gaussian probability density for 1On variables 

P({v(i),fi(i),<A(i),A = l,..., 61i = 1, . ..n}). 

Generally, this requires knowledge of (v(i)u(j)), (v(i)ii(j)), (v(i){A(j)) and the u-c cross correlations 
for i # j. Since all but (v(i)v(j)) z +&(ij) Y $(I< - 51) mvo ve 1 d erivatives of ti, we need only retain 
this spatial correlation connecting i to j. 

At each point, we rotate to the principal axes and use the z(i), y(i),.z(i) variables of Appendix 
1. The correlation matrix between all 10n variables reduces to two pieces: (1) The 8n x En matrix 
involving the q(i),y(i),z(i) and <A(i),A = 4,5,6 variables is diagonal and independent of $. The 
corresponding contribution to P is the product ni P(+j(i), y(i),z(i), <A(i)) of independent terms. We 
ce.n therefore immediately integrate over these 8n variables: 

(~f5k(*i,4%4i)N = ( v( ($t)&) ). (~6.2) 

The average is now over the remaining 2n variables {(v(i),z(i))}; f(z) is given by equation (A1.15). 
(2) To evaluate this average, we need the 2n x 2n correlation matrix in these variables. It is convenient 
to consider the matrix as a tensor product of a 2 X 2 and en n x n matrix. The tensor product of A 
and B, mA x nA and nan x nn matrices respectively, is an m~mg x n~ng matrix A @ B. We make 
use of the properties 

(AQDB)(c@D) = AB@CD, (A@B)-’ = A-‘BE-‘, (A@B)t = At@&, TrA@B = TrA.TrB. 
(~6.3) 

The correlation matrix M can be written 

M=A@I+u@!?‘, 

where the (v, z) correlation matrix is 

(~6.4) 

A=(; $ u=(; $ (~6.5) 

I is the n x n identity matrix, and q = (+(ij)(l- 6;i)) is an n x n matrix with components Q(ij) if 
i # j and 0 if i = j. 

The inverse of M is required for P({v(i),z(i)}): 

M-’ = A-’ @ I - A-&A-’ @ C, 
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where 
c = * (1+ Q/(1 - 72))4, (A6.7) 

and 

, A-%A-’ = (&* (~6.8~) 

The properties A6.3 and the relation 

have been used. 

(A-‘u)’ = A-‘u/(1 - 7*)‘-l, for r an integer (A6.8b) 

The quadratic 2Q = ytM-‘y, where y = C;(v(i),z(i))t@ t 
e; denotes the n- dimensional row vector with 1 in the it” 

e, 1.9 a n lmensional vector. Here, 2 d’ 

quadratic reduces to a sum of independent terms 
position and 0 elsewhere. For ti = 0 the 

Q. = F(v(i) z(i))A-l(u(i) z(i))t = c(u(i)‘/Z + (2~~1-mz~~))*), (A6.9) 
i 

leading to a product of n independent v(i) - z(i) probabilities, 

P(v, z)dvdz = 
ezp(-G/Z) 4-g& 

6 (Zr(1 - 7Z))‘D dvdz, (A6.10) 

a combination which has appeared repeatedly throughout the paper. The full quadratic can be written 

Q = QO - i C C<jfiiCj, (A6.11~) 
I, 

where 
Ci E (vi - yz(i))/(l - 7’). (A6.11b) 

The joint probability also involves 

det A4 = det (A@ I) det (I+ @‘/(I - 7’)). (A6.12) 

The unreduced diflerential correlation function for fixed u(i) and curvature parameters z(i) follows: 

(A6.13) 
i 

The next step is to integrate equation (A6.13) over the z(i). The integrals would factor if it 
were not for the cross terms G(i)C<ji;(j)/2, i # j in the exponents. One way around this is to replace 
G(i) by 

where 

C(i) = C(i) - 7y(i)/(l - 72), (A6.14) 

C(i) = (v(i) - 7(z(i)))/(l- 7*), y(i) = z(i) - {z(i)). (A6.15) 

Write 

8 = 9’ - y!j z72GjY(i)Y(i)/(l - 7’)‘. (A6.16) 
If, 
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Define (z(i)) to be the average of z(i) weighted by the integrand with Q replaced by Q’. This modified 
integrand does factor into terms of the form 

f(44) w[-i(z(i) - ~(i))‘/(l - T(i)‘)], (A6.17) 

with 

and, in matrix notation, 

1 -$(i)” 3 (1 - 7*)/(1- 7’C;;/(l - 7’)) (A6.18) 

Z* = jr+ *‘I-’ [7v+ &(‘f Q/(1 - 7WQ1, 

where 0 is a vector with components 

6(i) z (z(i)) - z.(i). (A6.20) 

The interpolation formula given in equation (6.14) can be used to evaluate e(i) if y(i) replaces 7 and 
z.(i) replaces 7~. Equation (A6.19) is then an implicit equation for the z.(i) which must be solved 
by iteration, though the iteration process does converge fairly rapidly. 

Since the integrand is fairly sharply peaked about (z(i)) 
replacing Q by Q’ is of order [7’$/(1 - 7*)‘]’ 

as a function of z(i), the error in 

power series. The error is small unless some 
, as can be seen by expanding ezp[-f(Q - Q’)] in a 

v(i) me. 
of the $l;j are close to one, regardless of how large the 

Reexpressing Q’ in terms of the z(i) gives, in matrix notation, 

Q’= ac[z(i) - z.(i)]‘/[l -7*] + iut[l+*]-‘u 

1’ 7’ 
+q-7y 

C(IfQ./(l -rZ))(Z+ u)-‘c] 8 , 
(~6.21) 

where c is the matrix containing just the of-diagonal components of C. The integrals over the z(i) 
have now just the same form as in the number density integral, with 7v(i) replaced by z.(i) and 7 
replaced by T(i), so they can be expressed in terms of the function G(v(i),j(i),z.(i)), for whi& we 
have the accurate interpolation formula given by equations (4.4) and (4.5). 

if 7 < 
The procedure outlined above is quite accurate as long as +,6<j < l/2 (or for even larger tiij 
0.5), but is obviously rather cumbersome, For this reason, the Gaussian approximation to 

the integrand in the z(i) is the recommended procedure in $6.2. Comparing the approximation 
schemes offers craxxhecks on their accuracy. A straightforward Gaussian approximation using 2, 
gives a result for the two-point correlation amplitude 6::’ about 4% larger than the result of the 
above procedure when $1~ is small and about 10% larger when & FJ l/2 (for 7 = 0.555). The 
fudge of replacing z, by (z) reduces the discrepency to about 1% and 2.5%, respectively. Of course, 
~6~~ FJ l/2 is also where the approximation of neglecting derivatives of 11, is beginning to break down. 
The accuracy of neglecting the y(i)y(j) cross-terms can be checked by dropping these terms in the 

Gaussian approximation. This lowers f$’ by about 4% at $12 M l/2, but the discrepency decreases 

rapidly (as &) for smaller +I*. Dropping the derivatives of II, probably raises t$‘, since the exact 
p pb should become negative once r,,/R. < 1, due to the smoothing. 

Kaiser (1984) introduced the effective field S(V - F(r)/cr,) which describes those regions with 
densities in excess of the height Y. Politzer and Wise (1984) calculated the n-point correlation function 



of this field. An equivalent result can be obtained very concisely by considering instead the effective 
field 

D”(r) = S(v - F(r)/u,) (~6.22) 

which is non-vanishing only on the contour surfaces F(r) = YQ used in 54.4 where the Euler char- 
acteristic of these surfaces per unit volume is given. At low V, these surfaces are multiply connected, 
and the correlation function of D, will tell us nothing about peak clustering. However, at high Y the 
contour surfaces split up into disconnected ‘bags’, each surrounding a peak of height in excess of V. 
For distances large compared with the scale of an individual bag, the correlation function should then 
equal that for peaks. Since the n-point (unreduced) correlation function of D, is ezoctly the joint 
distribution for F(Q), . . . . F(r,), the calculation is trivial: 

l+ E,D(rl,y(l),...,r,,Y(n)) E (niDu(i)(ri)) = P((F(ri) = v(i)n0, l= l,...,n}) 
rwY(i)(*i)) IL P(F(*i) = v(i)u0) 

= ezp(YtQ(r + q-%/z) 

( det (I + q )1/Z 

+ ezp(v t @v/2) as $ * 0. 

In the high v limit, the S(V - F(r)/cro) field 1 a so g’ wes this result, as Politzer and Wise demonstrated. 
The degree to which it fails to provide a description of the clustering of peaks is the degree to whi& 
D differs from Y. In most of the cosmologically interesting regime, the deviation is substantial. 

60 



APPENDIX 7: Power Spectra and Dark Matter 

The only information required to specify our homogeneous isotropic Gaussian random fields is 
their power spectra. We define the transfer function for linear perturbations which takes the initial 
Fourier components of the density F(k, t;) a some very early time ti to the final ones F(k, tr) at some t 
late time t f by , - 

T(k tf) ~ *(k) F(ktf) 
b(tj) F(k,k) ’ 

where b(t) specifies the linear growth law of long wavelength perturbations. The difficulty with 
this definition of the transfer function is that it depends upon the choice of gauge and the choice 
of hypersurface upon which the density fluctuations are measured. Gauge-invariant quantities can 
easily be constructed to alleviate the first problem. In equations (A7.9) and (A7.10) below, we give 
a hypersurface-independent way of treating the transfer function which we feel is superior to the 
usual definition, equation (A7.1). The density perturbations should be taken to be those defined, 
for example, in the popular synchronous gauge (Peebles 1980) referred to some specific choice of 
synchronous hypersurfaces. Referring the density fluctuations to comoving hypersurfaces would give 
the same result for 2’. In the matter-dominated regime in an Einstein-de Sitter universe, b = a, where 
a(t) is the expansion factor. For most cosmological models, T is approximately time independent 
below a redshift L - 100. The power spectrum of density fluctuations evolves according to: 

(A7.2) 

The following fitting formulas drawn from the work of Bardeen (1984), Bond and Szalay (1983), 
Bond and Efstathiou (1984) and Efstathiou and Bond (1985) accurately reproduce the transfer funG 
tions at late times for universes dominated by collisionless relics of the Big Bang in which the baryon 
density IIE, is much smaller than the density of dark matter n,. 

(1) Cold Dark Matter, Adiabatic Fluctuations: 

TcDM,.d,x(k) = ln (;;4zd34p) (1 + 3.89q + (16.lq)’ + (5.46q)‘+ (6.71q)‘)-‘l’, 

q = k9”=f(RxhZ Mpc-‘). 
(A7.3) 

Here, B = p.,/(L68p,) is a measure of the ratio of the energy density in relativistic particles (photona 
plus neutrinos) to that in photons. 0 = 1 corresponds to 3 flavors of relativistic neutrinos plus the 
photons. Other CDM fits appropriate to the case when n B is not small are given in Bond and 
Efstathiou (1984). (See also equation (A7.6) below.) The transfer function of the baryons is ‘filtered’ 
on small scales due to the finite baryon pressure around recombination: 

Tcm,ad,B(k) = Tcm,od,x(k)(l+ (k&r)‘/2)-‘, RJ, = l.6(W?)-“2 kpc. (A7.4) 

(2) Massive Neutrinos (one species), Adiabatic Fluctuations: 

Tv,,d(k) = ezp(-O.l6(kQv) - (kRfv)2/2)(1+ l&q+ (4.Oq)“’ + (O.gzq)‘)-‘, 

q E k/@,h’ Mpc-I), 

R,y = 2.6(C’l,hZ)-‘Mpc 

T,+,(k) M ezp(-3.9q - Z.lq’). 

(A7.5) 

The first expression gives an exponential damping factor times the cold dark matter spectrum apprw 
priate to a universe with 2 species of relativistic neutrinos (0 = 0.87). Ryv is a characteristic damping 
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length for neutrinos. The damping is dominated by the Gaussian part of the filter. If we define B 
characteristic Gaussian filtering length by the radius at which the filtering function drops to l/e, then 
this radius is l.lRf,. In 97.3, we just use Rf” which gives a fairer estimate of the short wavelength 
falloff. The second expression is B straight fit to the results. Note that fl,h2 = 0.31m,/(30 eV). 

(3) Warm Dark Matter, Adiabatic Fluctuations: 

Two.m,od(k) = =p(-kRfw/2 - (kRfw)“/2)TCDM,~~,X(k), 

Tom,od,x(k) = (l+ 1.7q + @.3q)“* + q’)-l, 

q = k/(&h= Mpc-‘), 

Rfw = 0.2(~)-‘~3($-l,hz)-‘. 

(~7.6) 

Here, gX&e is the effective number of particle degrees of freedom when the X-particles decoupled; 
values in the range 60 - 300 are typical of minimal grand unified theories over the range of decoupling 
temperature T - 1 GeV - 10” GeV. R fy involves the free-streaming length for the warm dark 
matter as in the neutrino case. Note that Rxh’ = l.O(g x&100)-‘(mx/keV) for warm dark matter. 
The same form for the exponential as in the massive neutrino case was chosen for simplicity, at the 
expense of goodness of fit. Notice that the damping is effectively gentler than in the neutrino case. 
The l/e Gaussian filtering length is 1.9R fw, but this gives far too much damping on larger scales. The 
exponential damping term multiplies the 0 = 1 cold particle spectrum. The CDM transfer function 
given in A7.6 provides an alternative simpler fit to the CDM transfer function, though it is not quite 
as accurate as equation (A7.3). In both the neutrino and warm dark matter cases, the baryons have 
the same power spectrum as the collisionless relics. 

To get the final power spectra, the initial spectrum is required. This is usually assumed to 
be a power law with index n. In particular, the index n = 1 defines the Zeldovich spectrum that 
arises in inflation. The asymptotic form for the output power spectrum of cold dark matter density 
fluctuations is therefore - Ak for small k and u Ak-‘(ln(k))*/16 for large k, with A a normalization 
amplitude. Hot (massive neutrinos) and warm dark matter have almost no power on small scales due 
to collisionless damping. 

(4) Cold Dark Matter, Isocurvature Fluctuations: 

T mw,im,x(k) = W%)‘(l + 1 + 215q + ;;:;)& + o,5q)-l + 6W3”) -“’ 

= (5.6q)‘(l+ (15q + (0.86q)“’ + (5.6q)*)1.2’)-o~807, 

q c k/(&h’ Mpc-‘). 

(A7.7) 

Two excellent fits are given. The asymptotic behavior, -+ (5.6k)Z and -+ 1 for large and small 
k respectively, differs considerably from that appropriate to the adiabatic case. However, for the 
isocurvature axion mode, zm n = -3 initial spectrum is appropriate, which yields the - k and u k-* 
limits for the evolved power spectrum as for the n = 1 adiabatic case. If primordial black holes form 
the dark matter, n = 0 might be the appropriate initial spectral index (E = 0 for r # 0). This implies 
little power (- k’) on large scales. 

In addition, an overall amplitude must be specified to normalize these spectra. In 56.6, v+s 
discussed two ways to do this using the observed galaxy correlation function and the galaxy correlation 
function we predict using the threshold hypothesis. The first is simply to normalize E to unity at 
r. = 5 h-‘Mpc. The second is to use .73(r) normalization for r B ro using the spatially uniform biasing 
factor b. Another standard procedure would be to require that the power spectrum top-hat-filtered on 
scale RTH satisfy CQ(RTH = 8 h-‘Mpc,to) = b-‘(t o , since this is the scale when the rma fluctuations ) 
in the number of bright galaxies equals unity. Deviations from the simple b* proportionality on scales 
which contribute significantly to ((AN,.I(RTw)/N,.I)*) imply that Js normalization is preferred. 
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Another way to characterize this overall amplitude is to relate the final density to an initial 
measure of the perturbation amplitude (so that tf in A7.2 is to, the age now). In this case, it is 
useful to specify the initial amplitude in terms of quantities that are constant when the perturbation 
is outside the horizon. For adiabatic perturbations, 

5 = 34 + btotl(Ptot + PM) (A7.8) 

is such a measure which is hypersurface-invariant. Here pt.* is the total pressure and q% is related to the 
spatial scalar curvature perturbation by 6R = -4V*+ - 12C+/aZ, where C is the background spatial 
curvature constant. (See Bardeen 1980 and Bardeen, Steinhardt and Turner 1983 for notation.) If 
Fx is extrapolated linearly to the present according to the flat universe growth law (- a), then 

Fx(k, to) = 2.0 X lO’(nxh’/e) T(k, to) q*<(k,ti) (adiabatic). (A7.9) 

We require ti < teq, where t., is the time that the energy in relativistic particles equals that in 
nonrelativistic ones. To use this for n < 1, one should back track Fx to a time before a redshift n-1 
then evolve forward using the correct growth law for ll # 1 universes (e.g. Peebles 1980). The n = 
initial spectrum has (jf(k,ti)l’) o( km3. 

i 

For isocurvature CDM perturbations, the hypersurface-invariant initial amplitude is measured 
by the fractional relative perturbation 6sx/sx of ax, the comoving entropy per X p&i&: 

F&k, to) = 6.3 x lO’(Rxh*/B) T(k, to) (- “~$;;)) (isocurvature). (A7.10) 

We advocate Fx/$ and Fx/(-Se x sx as better ‘transfer functions’ than equations (A7.3- / ) 
A7.7) for adiabatic and isocurvature cosmological perturbations respectively, since, for waves that are 
inside the horizon at the present time, they are hypersurface-invariant characterizations. Notice that 
both converge to the same value, 2 x 108q2, as k -+ 0. 
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Table 5.1 

Peak Enhancement Factor Coefficients for r P 0.619 

8 1 
I q-0 I q - 16 I q=8 I 

, I I 1 i 
I vtl a l I a l I a l I 
I t I I I I I 
I 2 I 1.408 0.996 I 1.373 0.903 I 1.260 0.799 
I 3 

1 
I 2.425 1.061 I 2.215 0.941 I I.835 0.767 

I 4 I 3.500 
1 

1.082 I 2.937 0.868 I 2.203 0.659 
t 

1 
I I I 1 1 



Table 5.2 

Enhancement Factors for Gal ax ies in Rich Clusters 

R,(h-‘Mpc) 9 vt E(Fbj ‘b Zt =9 

0.178 16 3.47 7.2 4.4 3.7 3.6 
8 3.90 5.2 3.7 5.3 4.0 

0.356 8 2.75 3.9 3.4 2.9 2.9 
4 3.22 2.7 3.0 4.3 3.0 



Table 6.1a 

Asymptotic Correlations for the Adiabatic Spectrum 

h R,(h-‘Mpc) q 

0.4 0.178 16 3.47 2.62 0.271 
8 3.90 2.22 0.194 

0.445 16 2.23 1.59 0.225 
8 2.29 1.47 0.191 

0.5 0.143 16 3.74 2.80 0.202 
8 4.31 2.31 0.137 

0.356 16 

vt 

2.62 1.92 0.214 
2.79 1.73 0.173 
3.22 1.36 0.107 

<;> <G>25po 2 

(r=Sh ‘Mpc) 

Table 6.lb 

Asymptotic Correlations for the Isocurvature Spectrum 

h R,(h-‘Mpc) q 

0.4 

0.5 

0.178 16 3.12 2.47 0.970 
8 3.43 2.17 0.745 

0.445 16 1.79 1.35 0.444 
8 1 .80 1.28 0.394 
4 1.87 1 .lO 0.295 

0.143 16 3.40 2.67 0.854 
8 3.83 2.29 0.626 

0.356 

vt c-c’, 

16 2.23 1.71 0.536 
8 2.30 1.58 0.458 
4 2.57 1.32 0.317 
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FIGURE CAPTIONS 

FIGURE 4.1: 

The spectral parameters for the adiabatic and isocurvature cold dark matter models evolved from 
Zeldovich initial conditions as a function of Gaussian filtering scale Rf. 7, R, and 00 are defined 
by equation (4.6). The conditions chosen were h = 0.5, fl = 1, nB K n. The scaliig of Rf 
approximately follows (nh’)-‘. (S ee appendix 57.) An equivalent tophat filtering scale is RTH ra 
1.6Rf. Normalization for no at the present time on galactic scales is discussed in 56.6. 
FIGURE 4.2: 
The differential number density &b(~)d Y of peaks between Y and v + dv for various values of 7. The 
spectral parameters 7 and R. are defined by equation (4.6). 
FIGURE 4.3: 
The cumulative number density VQ,~(V) of peaks with height in excess of Y(T,,. 
FIGURE 4.4: 
The product of the selection function equation (4.13) and the number differential peak number density 
for vt = 3.5 and (I = 8 and 16 demonstrates the effect of fuzzing out the sharp threshold. 
FIGURE 6.1: 
Twc-point statistical peak-peak correlation functions of peaks of galactic scale R, for the adiabatic 
(a) and isocurvature (b) cold dark matter models with R = 1, h = 0.4. Given R, and the threshold 
sharpness parameter IJ (16 and 8 for the small and large R.), the threshold is determined by equating 
(npk(vt)) to the observed density of bright galaxies: (a) V* = 3.5, 2.3, (b) vt = 3.1, 1.8 for R, = 0.18 
and 0.45 respectively for the two cases. The direct calculation ($6.2) is &,k and the one utilizing the 
peak-background split ($6.3) is .$. F or comparison, the mass correlation function &, ampliiied by a 
constant factor determined from the large scale limit of tPpk is also shown. The peak-peak correlation ia 
much closer to a power law than that of the mass. Dynamical evolution of these statistical correlation 
functions must be included to reach the correct current amplitude of fPk. 
FIGURE 7.1: 
The constrained probability P(+) of equation (7.5) giving the distribution of z = -V’F/u, for 
peaks. (The z used here is 1.58 times that in the text.) 
FIGURE 7.2: 
The 95%, 90% and 50% contours of the conditional probability for ellipticity e = y/z and prolatensss 
p = E/Z subject to the constraint of given z for peaks (equation 7.6). (The z and Z. used here us 
1.58 kl 7-l times those used in the text, so Y = 1,2, . ...6 corresponds to the different curves.) This 
figure demonstrates that, even for high Y, the shapes are triaxial. The values of e and pare constrained 
to lie in the triangle. 
FIGURE 7.3: 
The orientation-averaged density profile about a peak of height v = 2.7 and its fl - sigma deviations 
are compared with the average profile for an ambient field point. The parameters are typical of CDM 
models of galactic scale structure. The mean spacings of peaks filtered on this scale in units of R, for 
the n = -2.5 and adiabatic examples respectively are: 18 and 13 for Y > 2.68; 7.5 and 6.3 for v > 1, 
which is also just about the spacing for peaks of arbitrary height. 
FIGURE 7.4: 
The asymmetry of the Y = 2.7 peak of the previous example with e w 0.2,~ = 0, the most probable 
values. The density profile along the l-axis is compared with the sphericalized mean (e = 0) of Fig. 
7.3 and the profile along the 3-axis. An intermediate asymmetry is also shown. 
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